A Snapshot of Secondary Education for Students with Mild Intellectual Disabilities

Emily C. Bouck
Purdue University

Abstract: Given the number of students identified with mild intellectual disabilities and the studies showing their poor postschool outcomes, it is surprising and alarming that little current research has examined educational programming for this population of students. This paper presents a secondary analysis of the National Longitudinal Transition Study-2 (NLTS2) relative to understanding the educational programming (i.e., curricular focus, course instruction, setting where receive instruction, participation in assessments, and parental satisfaction) for high school students with mild intellectual disabilities. The majority of students received instruction in the core content areas, were educated in special education settings for core content areas, and received a specialized or modified academically-focused curriculum. Further, the majority of students take some form of a standardized assessment and have parents satisfied with their education. Although the data provide a snapshot of educational programming for high school students with mild intellectual disabilities, the data from the NLTS2 were from the early 21st century and future research should explore current educational programming, especially considering the impact of federal education legislation, such as No Child Left Behind (2002).

In a recent article by Polloway, Lubin, Smith, and Patton (2010), the authors raised questions regarding the legacies and trends of the educational practices for students with mild intellectual disabilities. Pulling from the 27th Annual Report to Congress on the Individuals with Disabilities Education Act (US DOE, 2007) and a released report from the National Longitudinal Transition Study-2 (NLTS2) (Wagner, Newman, Cameto, Garza, & Levine, 2005), Polloway et al. discussed the current state of education for students with intellectual disabilities and extrapolated from the data for students with mild intellectual disabilities (i.e., more of these students were educated outside of general education, and had lower rates of a high school diploma). The authors concluded students with mild intellectual disabilities need continued attention in terms of their education and cannot remain what Tymchuk, Lakin, and Luckasson (2001) coined “the forgotten generation.” This paper takes on the challenge by exploring educational practices relative to students with mild intellectual disabilities at the secondary level. Specifically, the author analyzed the NLTS2 data to present a national snapshot of secondary education for students with mild intellectual disabilities enrolled in public high schools in the early 21st century.

While less attention has been devoted in the last few decades to issues of education for students with mild intellectual disabilities, the educational practices for this population of students remains no less important. Understanding what constitutes the educational programming received by students with mild intellectual disabilities and the implications of such services is needed for several reasons. For one, while Polloway et al. (2010) suggested the prevalence rate is around one percent of all school-age students in the United States (US DOE, 2007), with rates varying across states and two states reporting over two percent of their population classified with mild intellectual disability, the category of mild intellectual disabilities is still a high incidence disability. In addition, previous research repeatedly reported students with mild intellec-
tual disabilities have less positive postschool outcomes (i.e., lower rates of employment, independent living, and postsecondary attendance) (Edgar & Polloway, 1994; Kaye, 1997; Martin & Marshall, 1995). Hence, it is important to better understand the relationship between educational programming (i.e., curriculum, setting) and outcomes, specifically with regards to improving postschool success, so as to drive needed changes to the educational programming of high school students with mild intellectual disabilities.

Within the limited literature on educational programming for students with mild intellectual disabilities, a survey of one state’s high school special education teachers provided glimpses of these students’ educational experiences (Bouck, 2004a). Bouck reported a wide variety of responses for the curriculum provided to secondary students with mild intellectual disabilities: 23.8% of teachers reported a special education curriculum, followed by 19.0% functional curriculum, 15.3% a general education curriculum, 14.3% a lower grade level curriculum, 13.8% a unique curriculum, 4.8% no curriculum, and 1.1% a vocational curriculum. Further, the special education teachers reported their high school students with mild intellectual disabilities receive the core content areas of mathematics, English/language arts, science, and social studies in a special education setting over 50% of the time. The primary instructional environment indicated for students with mild intellectual disabilities was a self-contained setting (52.9%), followed by a resource room setting (26.9%), general education setting (6.9%), vocational preparation setting (2.6%), and co-taught class (2.1%).

Although the results are from one state, they shed light and raise questions on the under-examined, but always contentious issue of education for secondary students with mild intellectual disabilities. For example, debate continues regarding inclusion and a general education curriculum versus pull-out settings and a more functional-based approach to educating secondary students with mild intellectual disabilities (Bouck, 2004b, 2007; Childs, 1981; Keogh & MacMillian, 1996; Polloway & Smith, 1983). Although this debate has existed for a few decades, it has intensified following the changes in federal legislation in the early 21st Century (i.e., Individuals with Disabilities Education Act [IDEA], 2004; No Child Left Behind [NCLB], 2002). Bouck (2007) discussed how NCLB and IDEA favor a general education curriculum for all students, including students with mild intellectual disabilities. Bouck noted how students with mild intellectual disabilities are now more likely to take the general large-scale assessment (NCLB), and it would be unfair to students and schools to require students with mild intellectual disabilities to take the general large-scale assessment without access to the general education curriculum, which is specifically geared to the tests (Wagner, 2008). For schools, the most practical way to accomplish access to the general education curriculum is through inclusion. Thus, privileging a general education curriculum and inclusion and de-emphasizing a functional curriculum and a pull-out approach for students with mild intellectual disabilities

Further complicating the debate on educational programming for secondary students with mild intellectual disabilities is a lack of research specifically related to the impact of curriculum on outcomes—both school success and postschool success—for this population of students. Hence, the field lacks information regarding the affect of a particular curriculum on secondary students with mild intellectual disabilities as well as what secondary students with mild intellectual disabilities are currently receiving as their educational programming. This project seeks to shed some light on the matter by providing a snapshot of the educational programming for secondary students with mild intellectual disabilities through a secondary analysis of the NLTS2.

National Longitudinal Transition Study-2

The National Longitudinal Transition Study-2 (NLTS2) is a longitudinal study funded by the United States Department of Education which reports the secondary educational experiences, including transition, and postschool experiences of students with disabilities (SRI International, n.d.b.). It is a 10-year study to follow a “nationally representative sample of youth with disabilities” between the ages of 13 and 16 who were in at least seventh-grade
during the 2000–2001 school year and who received special education services under IDEA (Newman, Wagner, Cameto, & Knokey, 2009, p. xiii). NLTS2 collects data from youth and parents, schools, and teachers to understand the school and after school experiences of secondary students with disabilities.

While many reports have been made publicly available (i.e., journal publications and reports on ERIC and the NLTS2 Web site) regarding data from the NLTS2 and students with disabilities in general and more specifically students with intellectual disabilities (e.g., Katsiyannis, Zhang, Woodruff, & Dixon, 2005; Newman et al., 2009; Polloway et al., 2010; Yu, Newman, & Wagner, 2009), few have examined educational issues relative to students with mild intellectual disabilities. While reports on students with intellectual disabilities can shed light on educational issues, the aggregation of information regarding students with mild intellectual disabilities with students with moderate and severe intellectual disabilities fails to acknowledge the qualitative and quantitative differences between these populations. Hence, there is a need to understand specifically the educational programming for secondary students with mild intellectual disabilities. This project sought to answer the following research questions: (a) what subjects are high school students with mild intellectual disabilities reported to receive in school?, (b) in what setting do high school students with mild intellectual disabilities receive their courses?, (c) what curricular focus do high school students with mild intellectual disabilities receive in school?, (d) what is the participation of high school students with mild intellectual disabilities on standardized assessments?, and (e) what is parental satisfaction for the educational programming of high school students with mild intellectual disabilities?

Method

Participants

The NLTS2 represents a two-stage sampling procedure (SRI International, 2000a; Wagner et al., 2005), meaning Local Educational Agencies (LEA) and state-supported schools were first randomly selected to participate and then students receiving special education services in the selected schools were randomly selected to participate. The school selection was stratified to account for geographic region, student enrollment, and wealth of LEA/community, and students were selected to ensure a 3.6% standard error in the disability categories with the highest frequency of students (i.e., learning disabilities, emotional/behavior disorders, intellectual disabilities, speech and language impairments, other health impairments, and hearing impairments) (SRI International; Wagner et al.). Student sampling was also weighted towards older students (i.e., those aged 16 as compared to 13–15 year-olds) at the start of wave 1 (SRI International).

The NLTS2 databases were created to allow for weighted reporting of data, thus representing the number of students nationwide who met the criteria for participation (see Javitz & Wagner, 2003; Wagner et al., 2005 for additional information relative to weighting the data). Using the weighted design of the study, a total of 19,899,621 students receiving special education services from 12,435 LEAs participated in the NLTS2 study (SRI International, n.d.a). The response rates for the parent/youth survey for wave 1 was 82.1% and the response rate for the school data was between 36% and 57% (Blackorby, Cameto, McCracken, & Valdes, 2009; SRI International).

Participants in this particular study were drawn from the NLTS2 database and only from the first wave of data collection (i.e., 2000–2001 and 2001–2002 school years). Specifically this project only included students in the NLTS2 database who had a primary school-identified disability as mild intellectual disability, were enrolled in grades 9–12, and attended a regular (i.e., typical public) high school. Hence, 80,739 high school students with mild intellectual disabilities were included in the analysis; all data are reported as weighted data (i.e., based on the population). However, not all students had responses to every question and frequencies related to demographics will be reported out of the number responding not the total possible number for participation. The average age of participants in this study was 16.3 ($SE = 0.92, n = 107,927$), with the majority of students age 17 (45.5%, $SE = 4.3$), followed by 16 (24.7%, ...)
SE = 3.4) and then 15 (15.1%, SE = 2.3). About one-third of the students reported being in 11th grade (33.2%, SE = 4.4), followed by 10th grade (25.5%, SE = 3.3), 9th grade (24.1%, SE = 3.6), and 12th grade (17.1, SE = 3.7). Just over half of the students in the study were Caucasian (50.3%, SE = 4.9), followed by African-American (40.7%, SE = 5.1) and Hispanic (7.0%, SE = 2.2). Slightly over half the participating students were male (54.8%, SE = 4.4). Finally, the majority of students were from families with a yearly income less than $25,000 (62.9%, SE = 3.9), followed by between $25,000 and $50,000 (20.6%, SE = 3.5), and then over $50,000 (16.5%, SE = 3.5).

Setting
The most frequently reported school setting for students in this analysis was suburban (49.1%, SE = 5.5), followed by urban (26.8%, SE = 4.8), and rural (24.0%, SE = 4.6). The average school enrollment across all schools was 1,273 (SE = 74.6) with a range from 23 to 3,710 students. Over one-third of schools reported they had between 26% and 50% of students eligible for free and reduced lunch, followed by less than 50% (29.5%, SE = 3.8), over 75% (18.0%, SE = 5.8), and then between 51–75% (16.1%, SE = 3.8). Over 90% of schools indicated they offered general education/inclusive education placements with services and supports in the general education class (90.6%, SE = 5.1), resource room placements (91.3%, SE = 4.2), and self-contained placements (91.1%, SE = 2.8). However, only slightly over 50% of schools indicated having co-taught placements (52.1%, SE = 6.4). The average class size reported across participating schools was 27 for the general education setting (SE = 0.58, range = 16–55), 11 for a special education resource room setting (SE = 0.56, range = 2–26), and 11 (SE = 0.35, range = 1–27) for a special education self-contained setting.

Data Collection
Data for this analysis were drawn from three NLTS2 databases: Student’s School Program, Students’ School Characteristics surveys, and the Parent Survey. The Students’ School Program Survey was a mail survey focused on the school program and sent to the teacher most familiar with the student’s overall school program, transition, special education services, state and district assessments, accommodations, provision of supports, performance, and parental involvement (SRI International, 2000b). The School Program Survey data used in this analysis was from Wave 1 (i.e., 2001–2002 school year). The School Characteristics Survey was also collected in Wave 1 and involved principals reporting on the background of the school (i.e., demographics of the school–student enrollment, school policies, and organizational structure) (SRI International). The Parent Survey from Wave 1 was an interview or a mail survey. The Parent Survey asked a variety of questions, including information about the students’ school and life outside of school. For the purposes of this analysis, only two variables were taken from the Parent Survey—overall parental satisfaction in terms of educational programming and satisfaction with the education their child received.

From the three surveys, variables were used to address the research questions as well as provide demographic information on the students and the schools (e.g., student ethnicity, age, gender, school setting and size). Non-demographic variables from the School Programming survey focused on the content areas students received instruction in the year of the study (e.g., mathematics, science, life skills, prevocational), the setting in which students received instruction for each content area (i.e., general education, special education, both), the general characterization of the focus and curriculum students received in special education (i.e., functional vs. academically intensive and level of modification), and student participation in standardized assessments. The two variables from the Parent Survey provided the sum of parents’ satisfaction (each with a scale of 1 to 4) with their child’s school, teacher, special education services, and education received, and parental satisfaction of the education the child received during the year of the study (scale 1 to 4).

Data Analysis
The secondary data analysis focused on descriptive statistics. Specifically, each of the
three databases were reduced to the particular variables of interest for the research questions and the databases merged together. Next, students were sorted by the primary disability reported by the school and all students without mild intellectual disabilities were eliminated. Similarly, the data were sorted for students with mild intellectual disabilities being in high school (i.e., grades 9–12) and any student not in one of these four grades was eliminated. Finally, data were sorted by school type and high school students with mild intellectual disabilities not attending a public high school were eliminated.

Frequency distributions were then calculated for student demographic variables including ethnicity, gender, grade, age, and family income as well as school demographics (i.e., percent of free and reduced lunch, geographical location). The mean and range were also calculated for age and class size. Next, frequency distributions, including standard error, were calculated for the different options for content area instruction: English/language arts, mathematics, science social studies, foreign language, art/drama/music, physical education, life skills, study skills, prevocational, and vocational. Related, frequency distributions were found for each different subject via grade level (i.e., ninth graders enrolled in mathematics vs. twelfth graders). Frequency distributions on the setting where students received instruction in each of the subjects were also calculated: general education, special education, or both general and special education.

In addition, frequency distributions were calculated for reported focus of students’ nonvocational special education (academics, life skills, basic academics, and study skills) as well as the reported curriculum of their special education courses (no curriculum, curriculum with no modifications, some modifications, substantial modifications, and specialized curriculum). Frequency distributions were also calculated for students’ participation in standardized assessments (no standardized assessment applicable, did not take, alternate assessment, standard assessment without accommodations, and standard assessment with accommodations) and parent satisfaction with their child’s education during the year of the study (very satisfied, satisfied, dissatisfaction, very dissatisfied) as well as the sum of their satisfaction of their child’s educational programming (i.e., sum of school, teacher, special education services, and education received, each with a scale of 1 to 4). Finally, the average was calculated of parents’ summed satisfaction (possible range of 4 to 16).

Results

Instruction Received

Over ninety percent of high school students with mild intellectual disabilities reported receiving English/language arts (95.4%) and mathematics (91.8%) instruction during the year of the survey (see Table 1). Social studies and science were the next most reported subject areas in which students received instruction, each with over 70% of respondents (79.8% and 74.5, respectively). Over half of respondents also indicated receiving instruction in physical education (69.1%), life skills (64.9%), and vocational and prevocational training (63.1% and 51.1%, respectively). Less than half reported receiving instruction in art, music, or drama (38.2%), study skills (30.4%), or foreign language (10.5%).

Although participation in particular subject areas was related to students’ grade level, all ninth-grade students with mild intellectual disabilities reported receiving instruction in language arts and mathematics and well over

<table>
<thead>
<tr>
<th>Subject Area</th>
<th>n</th>
<th>%</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language arts</td>
<td>79,732</td>
<td>95.4</td>
<td>2.0</td>
</tr>
<tr>
<td>Mathematics</td>
<td>79,610</td>
<td>91.8</td>
<td>2.5</td>
</tr>
<tr>
<td>Social studies</td>
<td>77,663</td>
<td>79.8</td>
<td>3.3</td>
</tr>
<tr>
<td>Science</td>
<td>78,035</td>
<td>74.5</td>
<td>4.0</td>
</tr>
<tr>
<td>Physical education</td>
<td>80,739</td>
<td>69.1</td>
<td>3.7</td>
</tr>
<tr>
<td>Life skills</td>
<td>80,739</td>
<td>64.9</td>
<td>4.7</td>
</tr>
<tr>
<td>Vocational</td>
<td>80,739</td>
<td>63.1</td>
<td>4.4</td>
</tr>
<tr>
<td>Pre-vocational</td>
<td>80,739</td>
<td>51.1</td>
<td>4.5</td>
</tr>
<tr>
<td>Art, music, drama</td>
<td>80,739</td>
<td>38.2</td>
<td>5.0</td>
</tr>
<tr>
<td>Study skills</td>
<td>80,739</td>
<td>30.4</td>
<td>3.6</td>
</tr>
<tr>
<td>Foreign language</td>
<td>80,739</td>
<td>10.5</td>
<td>4.3</td>
</tr>
</tbody>
</table>
the majority of tenth-, eleventh-, and twelfth-grade students also reported receiving instruction in these two areas (over 75% of tenth, eleventh and twelfth-graders for language arts and mathematics) (see Table 2). Over 75% of ninth and tenth-graders reported receiving instruction in both science and social studies as did over 75% of eleventh-graders for social studies. For science, just less than 75% of eleventh-graders received science, but less than fifty-percent of twelfth-graders. Between fifty and seventy-five percent of students in all four grades received life skills. For pre-vocational and vocational courses, between fifty and seventy-five percent of tenth, eleventh, and twelfth-grade students reported receiving either.

TABLE 2

<table>
<thead>
<tr>
<th>Subject Area</th>
<th>9th</th>
<th>10th</th>
<th>11th</th>
<th>12th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language arts</td>
<td>100%</td>
<td>95.7%</td>
<td>97.4%</td>
<td>84.2%</td>
</tr>
<tr>
<td>Mathematics</td>
<td>100%</td>
<td>95.8%</td>
<td>90.4%</td>
<td>78.3%</td>
</tr>
<tr>
<td>Social studies</td>
<td>83.2%</td>
<td>83.0%</td>
<td>85.3%</td>
<td>61.7%</td>
</tr>
<tr>
<td>Science</td>
<td>92.6%</td>
<td>80.4%</td>
<td>73.9%</td>
<td>43.4%</td>
</tr>
<tr>
<td>Life skills</td>
<td>62.1%</td>
<td>71.4%</td>
<td>55.7%</td>
<td>78.0%</td>
</tr>
<tr>
<td>Vocational</td>
<td>52.3%</td>
<td>63.2%</td>
<td>74.6%</td>
<td>53.9%</td>
</tr>
<tr>
<td>Pre-vocational</td>
<td>36.3%</td>
<td>55.3%</td>
<td>53.6%</td>
<td>61.5%</td>
</tr>
</tbody>
</table>

Educational Placements

The setting students received instruction in varied by subject (i.e., mathematics vs. physical education), although the majority of students reported receiving instruction in a special education setting (see Table 3). Over 75% reported students with mild intellectual disabilities received language arts (78.2%), mathematics (82.3%), life skills (77.9%), and study skills (95.4%) in a special education setting. Over 50% reported receiving social studies (62.2%), science (63.1%), prevocational (52.1%), and foreign language (68.5%) in a special education setting. The only courses in which the majority reported receiving instruction in the general education setting were

TABLE 3

<table>
<thead>
<tr>
<th>Subject Area</th>
<th>General Education</th>
<th>Special Education</th>
<th>General and Special Education</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>SE</td>
</tr>
<tr>
<td>Language arts</td>
<td>76,080</td>
<td>11.9%</td>
<td>2.6</td>
</tr>
<tr>
<td>Mathematics</td>
<td>73,122</td>
<td>9.9%</td>
<td>2.6</td>
</tr>
<tr>
<td>Social studies</td>
<td>62,002</td>
<td>28.6%</td>
<td>5.1</td>
</tr>
<tr>
<td>Science</td>
<td>58,134</td>
<td>27.6%</td>
<td>5.1</td>
</tr>
<tr>
<td>Physical education</td>
<td>55,777</td>
<td>72.5%</td>
<td>6.5</td>
</tr>
<tr>
<td>Life skills</td>
<td>52,411</td>
<td>13.7%</td>
<td>4.9</td>
</tr>
<tr>
<td>Vocational</td>
<td>50,937</td>
<td>42.9%</td>
<td>5.6</td>
</tr>
<tr>
<td>Pre-vocational</td>
<td>41,235</td>
<td>26.5%</td>
<td>5.5</td>
</tr>
<tr>
<td>Art, music, drama</td>
<td>30,874</td>
<td>74.6%</td>
<td>10.1</td>
</tr>
<tr>
<td>Study skills</td>
<td>24,505</td>
<td>4.6%</td>
<td>2.5</td>
</tr>
<tr>
<td>Foreign language</td>
<td>8,493</td>
<td>31.5%</td>
<td>18.8</td>
</tr>
</tbody>
</table>
elective courses: physical education (72.5%) and art, music, or drama (74.6%). Most students did not report receiving instruction in both special education and general education setting; the highest was 10% for vocational courses, followed by science (8.3%), language arts (7.4%) and social studies (7.4%).

Program Focus

Regardless of the specific content area instruction students received, the majority of teachers reported students received an academic focus in their non-vocational special education courses (64.9%, SE = 4.9). This was followed by a life skills focus (16.4%, SE = 3.9), basic academics (13.9%, SE = 3.7), and study skills (4.8%, SE = 1.7). In terms of the curriculum used in their special education courses, the majority of teachers indicated they provided a specialized curriculum (50.5%, SE = 4.7). The next most frequently identified was a general education curriculum with substantial modifications (34.3%, SE = 5.4), followed by a general curriculum with some modifications (9.9%, SE = 2.6), and a general curriculum with no modifications (3.0%, SE = 1.1). Just over two percent (2.3%, SE = 0.8%) reported no curriculum was used.

Assessment Participation

In terms of reported participation on standardized assessments for high school students with mild intellectual disabilities, the majority of respondents indicated participating in general standardized assessments with accommodations (52.7%, SE = 4.5). The next most frequent response was participation in an alternate assessment (19.6%, SE = 4.0), followed by not taking any assessment (12.2%, SE = 2.4) and an indication of no mandated assessment for students to take (12.2%, SE = 2.4). Just over three percent (3.4%, SE = 1.1) of students were reported to have taken a general standardized assessment without accommodations.

Parental Satisfaction

The final aspect of educational programming for high school students with mild intellectual disabilities was parental satisfaction. In terms of overall satisfaction (i.e., the sum of parents rating on a scale of 1–4 for school, teacher, special education services, and education received), the mean level of satisfaction was 13.6 (SE = 0.23; maximum of 16). The range in satisfaction was 5 to 16, with 16 being the most frequently expressed level of satisfaction (34.0%). Looking only at parental satisfaction for education, the majority of parents reported being very satisfied (54.6%, SE = 4.8), followed by somewhat satisfied (37.5%, SE = 4.7). Less than 5% of parents reported being somewhat dissatisfied (4.5%, SE = 1.6) or very dissatisfied (3.4%, SE = 1.7).

Discussion

The secondary analysis of the NLTS2 focusing on the educational programming of high school students with mild intellectual disabilities revealed five main findings: (a) the majority of students in this population receive instruction in the core content areas, although participation decreases as students advance in grade, (b) the majority are educated in special education settings for core content areas but typically in the general education setting for elective courses, (c) in special education settings the majority receive an academically-focused curriculum, although it is likely to be a specialized curriculum or a general education curriculum with substantial modifications, (d) about 75% take some form of a standardized assessment, with most taking the general standardized assessment with accommodations, and (e) parents are satisfied with the education their children receive.

Around 75% of high school students with mild intellectual disabilities receive instruction in the core content areas in a year (i.e., mathematics, English/language arts, science, and social studies). However, the frequency of receiving instruction in a core content area decreases as students advance in grades. For example, 100% of ninth-graders received instruction in English/language arts and mathematics, but only 84.2% and 78.3%, respectively, participate in these content areas in twelfth-grade. This is not unlike what typically occurs for students without disabilities. However, the results for non-core content areas did not follow the same pattern (i.e., life skills, pre-vocational, vocational). While over fifty-
percent of students in each of the four grades reported receiving instruction in these areas (note, pre-vocational education is an exception for ninth-graders), the pattern was not consistent in increasing or decreasing as students advanced in school years (refer to Table 2).

Aside from elective courses (i.e., physical education, art/music/drama), the majority of high school students with mild intellectual disabilities received instruction in a special education setting (refer to Table 3). The data showing more pull-out placements and less inclusion are consistent with historical and other sources of data regarding educational placements (Polloway, 1984; Polloway & Smith, 1983; US DOE, 2007). Students with mild intellectual disabilities have historically experienced more pull-out placements (Dunn, 1968), which has positive and negative implications (Bouck, 2004b). Regardless of one’s view on inclusion, the setting in which students with mild intellectual disabilities receive their education holds implications for curriculum, instruction, and testing, particularly in light of NCLB (2002) and IDEA (2004) (Bouck, 2007).

Given the majority of students with mild intellectual disabilities receive content area instruction in special education settings, it is consistent that almost two-thirds of the teachers indicated the focus of their special education classes was on academics. Yet, the academic instruction they are receiving is often a specialized curriculum (50.5%), not the general education curriculum. When it is the general education curriculum, it is frequently with substantial modifications (34.3%). While this is not surprising students with mild intellectual disabilities might benefit from a specialized curriculum or a general education curriculum with modifications given their characteristics (Bouck, 2004a, 2004b), it does hold implications. For example, the focus on academics may be to the detriment of life skills or a functional curriculum for this population (Bouck, 2004b). While over 75% of students with mild intellectual disabilities report receiving instruction in life skills, only 16.4% indicate this as the focus of their special education classes. Another implication pertains to the disconnect between receiving a specialized or modified curriculum and taking a general assessment.

Despite the high frequency of students reportedly receiving a specialized curriculum or the general education curriculum with substantial modifications (84.8%), over 50% took the general standardized assessments with accommodations. The general standardized assessment but not a general education curriculum or general education curriculum with some modifications seems at odds, and that students with mild intellectual disabilities are not being prepared to be successful on the test (Bouck, 2007). While not advocating students with mild intellectual disabilities should be victims of teaching to the test, if students with mild intellectual disabilities are to take the general standardized assessments they should be given a fair opportunity to be successful (i.e., increased exposure to the general education curriculum in general education settings) or be allowed to take alternate assessments and focus their instruction on practical applications of core areas in conjunction with functional or life skills.

Regardless of the issues previously noted, parents are generally satisfied with the educational programming their high school students with mild intellectual disabilities receive. Less than 10% of parents indicated they were dissatisfied with their child’s education and over one-third stated they were very satisfied with all four aspects assessed: their child’s school, teacher, special education services, and education received. Hence, although researchers and teachers might see issues (i.e., lower rates of functional curriculum, general education assessment but not general education curriculum), parents are either unaware of the issues or do not feel these situations are issues.

Conclusions and Implications

In summary, high school students with mild intellectual disabilities experience a wide array of exposure to content classes, including a large percent receiving yearly instruction in the core content areas. However, the primary educational placement for instruction is a special education setting and the curriculum utilized is not the general education curriculum their non-disabled peers receive. In theory,
high school students with mild intellectual disabilites are not being prepared to take stand-
dardized assessments, of which over 50% take the general assessment with accommodations. It appears the education for high school stu-
dents with mild intellectual disabilities is in a state of confusion and a consistent message is not given. While the author does not contend students with mild intellectual disabilities should be required to take the a standard general education curriculum and be successful on general standardized assessments (see Bouck, 2004b), the message is not clear to practitioners regarding what should be the educational focus in terms of priorities for this population.

The confusion is evident through the contradictory messages. For example, the high percent of students with mild intellectual disabilites taking the core content areas of English/language arts, mathematics, social stud-
ies, and science at least three years if not four, is consistent with the agenda for all high school students in terms of years of study with respect to core courses (Corcoran & Silander, 2009; Lee & Ready, 2009; Rouse & Kemple, 2009). Yet, the focus of core content area general education curriculum is to prepare more students for postsecondary education, particularly four-year college (Lee & Ready). The historical and recent data on students with intellectual disabilities attending postsec-
ondary education is weak, with most attending vocational, business, or technical schools not a four-year college (Wagner et al., 2005). Attend-
dance at a four-year college would be more aligned with instruction with a general education curriculum and in the general education setting, which is not what is occurring for the majority of students. Additionally, attending postsecondary education is typically aligned with taking and passing the general standard-
ized assessment, and almost one-fourth of stu-
dents did not take the assessment.

While the data provided a snapshot of edu-
cation for high school students with mild intel-
lectual disabilities, the data are somewhat old (i.e., 2001–2002 school year) and may not reflect current educational programs due to the implementation of NCLB (2002) and IDEA (2004). For example, the emphasis in recent years on students with mild intellectual disabilities taking the general large-scale as-

sessment suggests schools may place more stu-
dents in general education settings with a gen-
eral education curriculum (Towles-Reeves, Kampfer-Bobach, Garrett, Kearns, & Grisham-
Brown, 2006). However, current data may also reflect no change or an increase in a general education curriculum with substantial modifi-
cations following the United States Department of Education change in 2007 to alternate assessments based on modified achievement standards, which would be target-
et towards students with mild intellectual disabilites for example (Kleinert & Thurlow, 2001; Thompson, Quenemoen, Thurlow, & Ysseldyke, 2001; Ysseldyke, Olsen, & Thurlow, 1997). Whatever the likely impact of federal education legislation of the 21st Century, it is not anticipated to have resulted in an in-
creased focus on life skills (note, less than one-fifth of students indicated this was their special education focus in 2001–2002). The use of a functional or life skills curriculum has been decreasing over the past few decades; once the most popular curricular approach to educating students with disabilities, it has been replaced with a heightened focus on academic standards (Alwell & Cobb, 2009; Bouck, 2004b; Browder, Spooner, Wakeman, Trela, & Baker, 2006; Nietupski, Hamre-Niet-
upski, Curtin, & Shrikanth, 1997).

Limitations and Future Directions

This project represented a secondary analysis of the NLTS2 and hence is subject to the limitations of the NLTS2 project. For exam-
ple, the NLTS2 relies on self-report of parents, students, teachers, and other school personal. Missing data also exists. Respondents could elect not to respond to particular questions or some questions might have been skipped pur-
posefully. Hence, the frequency for different questions might be based on different n, and the reason why the n was reported. However, the lack of response might inflate the fre-
quency, as an individual might have elected not to respond rather than say no or yes to a particular question.

Another limitation of the analysis involves the time of data collection–2000–2001 and 2001–2002 school years. While the analysis provides a snapshot of the educational pro-
gramming of high school students with mild
intellectual disabilities during this time, educational programming for all students with disabilities—including students with mild intellectual disabilities—is likely to have changed following passage of the federal legislation NCLB (2002) and the reauthorization of the IDEA (2004). Yet, the NLTS2 did not ascertain the key school program information used in this analysis after time for NCLB or IDEA to take affect. Hence, we do not know what the school programming looks like for students with mild intellectual disabilities considering federal legislation that places greater focus on inclusive education and all students taking state assessments aligned to state standards (Bouck, 2007).

Future directions should seek to understand the current educational programming of secondary students with mild intellectual disabilities and analyze the impact of NCLB (2002) and IDEA (2004) on the education provided to this population of students. While the NLTS2 will not provide a national snapshot of the educational programming, researchers should consider a replication or adaptation of the survey done by Bouck (2004a), which was also conducted prior to IDEA (2004) and before NCLB impacted schools. Further research should also seek to understand the impact of educational programming on the postschool outcomes of students with mild intellectual disabilities (i.e., employment, postsecondary educational attendance, independent living). For example, future research might ascertain the impact of a functional curriculum vs. an academic focus on the postschool outcomes or the impact of a higher percentage of time in a pull-out setting vs. a general education setting on postschool outcomes. While this study sheds light on what constitutes the educational programming, it is critical to understand the implications of elements of educational programming.

References

