Effects of a Self-Monitoring Checklist as a Component of the Self-Directed IEP

Karen M. Diegelmann and David W. Test
University of North Carolina at Charlotte

Abstract: Post-school outcomes for students with intellectual disability continue to lag behind other students with disabilities. One way to improve outcomes for these students is to include them in decisions about their future by teaching students how to participate in their IEP meetings. Self-monitoring provides immediate feedback, motivation, and teaches students to self-regulate what they are learning. In this study, two middle school and two high school students learned the steps of leading their IEP meeting. This study used a multiple baseline across participants design to examine the effects of a self-monitoring checklist as an essential component of the Self-Directed IEP for students with intellectual and multiple disabilities. Results showed three of four students only met criteria once the self-monitoring checklist was introduced. In addition, three students were able to generalize to post-intervention mock IEPs using the self-monitoring checklist.

Young adults with intellectual disability are much less likely to attend postsecondary education programs or to be competitively employed as same aged peers without disabilities (Bouck & Joshi, 2012). One reason may be that these students are not always taught about opportunities for after high school or have been left out of the decision-making process for their future. As postsecondary education programs grow, employment opportunities increase, and awareness of possibilities for students with disabilities heighten; post-school outcomes have begun to improve for students across most disability categories. Students with intellectual disability however, continue to lag behind other students with disabilities in these areas (Bouck, 2012; Bouck & Joshi, 2012; Newman et al., 2011).

One way to improve outcomes for students with disabilities is to include them in decisions that determine their future (Warger & Burnett, 2000). According to Kohler and Field (2003), student-focused planning provides an avenue for students to develop self-determination skills and self-awareness. Test, Mazzotti, et al. (2009) identified self-advocacy/self-determination skills as a predictor of successful post-school outcomes. Research has found students with disabilities who scored higher on self-determination scales showed an increased ability to create goals and make decisions (Wehmeyer, Palmer, Soukup, Garner, & Lawrence, 2007). Likewise, students with higher self-determination scores also had higher post-school outcomes one year (Wehmeyer & Schwartz, 1997) and three years after high school (Wehmeyer & Palmer, 2003).

The IEP process provides a potential opportunity for students to practice and learn self-determination skills. Students practice their self-determination skills as they consider their (a) interests, (b) skills and limits, and (c) goals in preparing for their IEP meeting (Martin, Marshall, Maxson, & Jerman, 1996). However, according to the NLTS2 data, only 12% of students with disabilities actively led their transition planning process (Cameto, Levine, & Wagner, 2004). Similarly, Shogren, Kennedy, Dowsett, Villarreal, & Little (2014), found students with intellectual disability showed significantly lower levels of certain self-determination constructs (i.e., psychological empowerment) compared to students with high-incidence disabilities on the NLTS2. For this reason, it is important for educators to teach students with
intellectual disability about self-determination skills needed to participate in their IEP meetings.

One transition curriculum shown to increase student IEP participation is the Self-Directed IEP (Martin et al., 1996), which is designed to teach self-determination skills and build students’ understanding and active participation in their IEP meetings. The Self-Directed IEP curriculum incorporates (a) a DVD or VHS with vignettes of a high school student named Zeke talking to a friend about preparing for his IEP meeting and video segments of Zeke leading his IEP meeting, (b) vocabulary lessons, (c) teacher-directed instruction, (d) student workbook activities, and (e) a checklist for students to use as they role-play the IEP meeting in the last lesson. The Self-Directed IEP has been identified as an evidence-based practice (Test, Fowler, et al., 2009) and shown to be effective in several studies for increasing student IEP participation and leading their IEP meeting (Allen, Smith, Test, Flowers, & Wood, 2001; Arndt, Konrad, & Test, 2006; Kelley, Bartholomew, & Test, 2013; Snyder, 2002; Snyder & Shapiro, 1997; Uphold, 2008).

As educators are implementing more transition planning curricula including the Self-Directed IEP, identifying the individual components becomes critical for providing appropriate strategies for individual student success. Test et al. (2004) suggested future research investigate the effects of individual strategies within packaged transition curricula using component analysis (Baer, Wolf, & Risley, 1968). Component analysis can be used to determine the “necessary parts of an intervention” and to “determine how that particular component affects behavior” (Kennedy, 2005, p. 72). Once identified, these components can be emphasized when disseminating research to inform educators how to implement with fidelity, increasing the social validity of the intervention package at the classroom level (Ward-Horner & Sturmey, 2010).

One component of the Self-Directed IEP to consider is the Role-Play Checklist included in Chapter 11 of the Teacher Handbook. Several of the earlier studies examining the Self-Directed IEP (Martin et al., 2006; Snyder, 2002; Snyder & Shapiro, 1997) used the Role-Play Checklist as a self-evaluative tool at the conclusion of the last lesson to help the students identify what they had learned. Other studies (Allen et al., 2001; Uphold, 2008), used a checklist throughout the lessons as a self-monitoring tool to scaffold the learning process for students with mild/moderate intellectual disability. In these studies, students used the self-monitoring checklist to self-evaluate as they learned each step of their IEP. Self-monitoring is beneficial for some students as they observe their own behavior and keep track of how they performed using a graph or some other visual recording system (Agran et al., 2005; Reid, Trout, & Schwartz, 2005), providing reinforcement for what was learned and motivation for taking the next step (Agran et al., 2005).

Students with intellectual disability often have difficulty with learning and remembering new information (Heward, 2009). When learning with the Self-Directed IEP, students with intellectual disability may benefit from using a self-monitoring checklist to acquire new information about the steps of the IEP and recall that learning at a later time such as during an actual IEP meeting. A self-monitoring checksheet may also provide incentive for staying motivated to the task by checking off the boxes and visualizing their progress. Therefore, the purpose of this study was to examine the effectiveness of a self-monitoring checklist as a component of the Self-Directed IEP for students with intellectual on knowledge of the steps for leading their IEP.

Method

Participants

Four students participated in this study from one middle school and one high school within the same school district. Inclusion criteria included (a) 14–21 years old, (b) diagnosis of intellectual and multiple disabilities, (c) ability to express needs and wants with verbal speech (e.g., I like to cook), and (d) good attendance record defined as missing no more than three days per semester. Students were excluded from the study if they (a) already learned the Self-Directed IEP (Martin et al., 1996) strategy or any IEP participation strategy, or (b) led their IEP meeting in the past. Pseudonyms which were used throughout the
study. Although officially invited to their IEP meetings, none of the participants had ever attended his/her IEP meeting in the past, nor were they aware of the school and transition goals written in their IEP document, according to student interviews.

Alexander was a 14-year-old Caucasian male with mild intellectual disability. He attended eighth grade and participated in the regular education setting for 39% of his school day. According to his school cumulative folder, Alexander scored in the extremely low range (i.e., 41) compared to his same-aged peers, on the Wechsler Intelligence Scale for Children-II (WISC-IV, Wechsler, 2003), and in the well below average range on the Woodcock Johnson Tests of Achievement-III (WJ-III; Woodcock, McGrew, & Mather, 2007), with scores for Broad Reading = 66, Math Calculation = 20, and Written Expression = 41. On the Adaptive Behavior Assessment System-III (ABAS-II; Harrison & Oakland, 2003), Alexander scored in the extremely low range as recorded by his parent = 70, regular education teacher = 62, and his special education teacher = 55, and his score on the STAR Reading assessment (Renaissance Learning, 2014) was equivalent to 1.8 grade level.

T’Lik was a 14-year-old Caucasian male with multiple disabilities. He attended eighth grade and participated in the regular education setting for 39% of his school day. According to his school cumulative folder, T’Lik scored in the low normal learning rate/potential range (i.e., 86) on the Wechsler Nonverbal Scale of Ability (WNV; Wechsler & Naglieri, 2006) and on the WJ-III his scores were Broad Reading = 62, Reading Comprehension = 67, Math Calculation = 56, and Written Expression = 69. On the Test of Auditory Processing Skills (TAPS, Martin & Brownell, 2005), his scores were, Standard Score = 61, Phonological = 66, Auditory Memory = 55, and Cohesion = 65, and his score on the STAR Reading assessment (Renaissance Learning, 2014) was equivalent to 1.3 grade level.

Mary was an 18-year-old Caucasian female with mild intellectual disability. She attended tenth grade and participated in the regular classroom for 80% of her school day. According to her school cumulative folder, Mary scored 60 on the full scale WISC-IV (Wechsler, 2003) and on the WJ-III (Woodcock et al., 2007) her scores were Basic Reading = 71, Reading Comprehension = 64, Math Calculations = 57, and Written Expression = 68. On the ABAS-II (Harrison & Oakland, 2003) General Adaptive Composite, she was scored by her parent = 74 and special education teacher = 54. Mary scored 80 which was below average compared to her same aged peers on the Beery-Buktenica Developmental Test of Visual-Motor Integration (VMI, Beery & Beery, 2004) and on the Clinical Evaluation of Language Fundamentals -Fourth Edition (CELF-4, Semel, Wiig, & Secord, 2003) her scores were Core Language = 70, Receptive Language = 66, and Expressive Language = 69.

Ray was a 15-year-old Caucasian male with mild intellectual disability and other health impairment. Ray was also diagnosed with Attention Deficit Hyperactivity Disorder, for which he took medication twice daily. He attended 10th grade and participated in the regular education setting for 80% of his school day. According to his school cumulative folder, Ray scored in the very low range of ability compared to his same age peers (i.e., 51) on the WISC-IV (Wechsler, 2003), and in the very low range (i.e., 57) on the Differential Ability Scales-II (DAS, Elliott, 2007). On the ABAS-II (Harrison & Oakland, 2003), he scored in the extremely low range as recorded by his mother and special education teacher. Ray exhibited an extreme processing deficit when assessed on the VMI (Beery & Beery, 2004). Additionally, on the Oral and Written Language Scales, Second edition (OWLS-II, Carrow-Woolfolk, 1996), he scored in the extremely low range of ability (i.e., 52) on both Listening Comprehension and Oral Expression.

Setting and Materials

The study was conducted at a middle school and high school in a large rural school district in the southeastern United States, which served approximately 32,176 students from preschool through 12 grades. All phases of the study were conducted in an empty classroom in each school to eliminate distractions from other students and to provide privacy. The experimenter and student sat at a table or arranged desks to resemble a conference table, typical of an IEP meeting. Materials to be used in this study were (a) the Self-Directed IEP
curriculum (Martin et al., 1996), (b) experimenter-made self-monitoring checklist with picture prompts, and (c) laptop computer with DVD player, (d) Sony Cyber-Shot digital video-recorder, and (e) experimenter-made flashcard with picture prompts for vocabulary words.

Self-Directed IEP. The Self-Directed IEP (Martin et al., 1996) is a curriculum designed to teach self-determination skills and build students’ understanding and active participation in their IEP meetings. The Self-Directed IEP program incorporates a DVD with video segments of Zeke leading his IEP meeting, vocabulary lessons, teacher-directed instruction, and student workbook activities in 11 steps. For this study, the workbook was presented orally and vocabulary was presented with picture prompts in a model-lead-test method.

For purposes of this study, a modified version of the Self-Directed IEP was used, which includes nine of the original 11 steps combined into seven lessons. The lessons were (a) Begin meeting by stating a purpose; (b) Introduce everyone; (c) Review past goals and performance and Ask for others’ feedback; (d) State your school and transition goals; (e) Ask questions if you don’t understand; (f) State the support you’ll need; and (g) Summarize your goals and Close meeting by thanking everyone. The steps not included from the Self-Directed IEP curriculum were (a) Deal with differences in opinion; and (b) Work on IEP goals all year.

Student IEP checklist. Students were provided with a self-monitoring checklist with picture prompts during the lesson, Phase two enhanced intervention sessions, and mock IEP meetings. The checklist had lines for students to write their responses as they learned the content during each of the seven lessons of the modified Self-Directed IEP.

Experimenter

The experimenter and interventionist for this study was a doctoral student who had over five years of experience working with youth and adults with intellectual disability and autism spectrum disorders in public schools and habilitative workshop settings. A second doctoral candidate in school counseling, who was familiar with single-case research and special education, was trained in all aspects of the Self-Directed IEP data collection procedures and observed the video recordings of intervention sessions to measure procedural fidelity, as well as all probe sessions and mock IEPs to measure interobserver reliability.

Experimental Design

A multiple probe across participants design (Horner & Baer, 1978) was used to investigate the effects of the Self-Directed IEP with self-monitoring check sheet with picture prompts as a component of a modified Self-Directed IEP on students’ knowledge of the steps of the IEP and time talking. Multiple probe design establishes the current status of the desired behavior before introduction of the intervention is staggered across individual participants.

Dependent Variable

Knowledge of IEP steps. The dependent variable was the number of steps of the IEP meeting the student implemented correctly as described in the Self-Directed IEP Teacher’s Manual (Martin et al., 1996). For this study, each step had been broken down into multiple responses to correspond with students’ answers to each probe question. For example, probe question number one asked students to state the purpose of the IEP meeting. The appropriate response had three components (i.e., review goals, state progress, set new goals) resulting in three possible answers. The total possible correct answers for the primary dependent variable was 30. Mastery was set at 24 of 30 correct independent responses. Percentage of correct IEP steps was calculated by the number of correct responses divided by the number of possible responses (i.e., 30) multiplied by 100. Probe sessions were conducted at the beginning of each intervention session, before any instruction was initiated.

Interobserver Reliability

The second observer was trained to collect interobserver reliability for the both dependent variables. The second observer watched 30% of probe sessions videos across each phase and independently scored participants’ responses as correct or incorrect on the data.
collection sheet. Item by item agreement for interobserver reliability was calculated, dividing the number of agreements by the total number of trials times 100 (Cooper, Heron, & Heward, 2007) and resulted in a mean of 86% (range 73%–100%).

Social Validity

Social validity data were collected from direct and indirect consumers. First, as direct consumers, participants completed a five item questionnaire on intervention procedures asking for their perceptions about using Student IEP Checklist with picture prompts. Participants indicated their agreement by circling the word with corresponding picture prompt for “yes”, “maybe”, or “no” about their perceptions of the intervention. Teachers read the survey to students, if needed.

Next, as indirect consumers, teachers and the job coach were asked to complete a five item questionnaire about the effectiveness and usefulness of the intervention to establish social validity on the procedures and outcomes. Teachers indicated their perception of students’ leadership during the IEP meetings and teachers’ perceptions of using the Self-Directed IEP in their classroom, by circling “agree”, “not sure”, or “disagree”.

Procedure

Baseline. Parent consents and student assents were obtained from all participants, according to the university institutional review board procedures prior to beginning baseline data collection. For each probe session, the experimenter greeted student and asked probe questions. The Student IEP Checklist was not presented to participants during baseline probes. If participants responded correctly to probe questions, the experimenter marked correct the data collection sheet and probed with the next question. If participant responded with an incorrect answer or did not answer within 10s, incorrect was marked on the data collection sheet and the next probe was presented. No feedback was given during baseline sessions other than thanks for participating. Each student participated in a minimum of three probe sessions during baseline or until a stable or decreasing trend was determined.

Phase one procedures. First, before each intervention lesson, probe data were collected using the same probe questions and procedure as in baseline, without the Student IEP Checklist. Second, the experimenter previewed the lesson for the day and reviewed previous lessons, using the picture prompts on the Student IEP Checklist. New vocabulary for each lesson were presented on index cards with the word and picture prompt. Third, the participant watched a video segment about Zeke leading his IEP meeting and discussed the contents of the video with the experimenter. The participant and experimenter orally reviewed the workbook material, wrote answers for that step on the Student IEP Checklist, and practiced the step using the Student IEP Checklist. Finally, the experimenter and participant role-played an IEP meeting. If the participant had difficulty stating a step, he/she was directed to the Student IEP Checklist for guidance. Upon completion of the lesson, the experimenter thanked the participant for cooperating in the session.

Phase two procedures. Students who did not meet mastery criteria on probe questions after completing the seven lessons in Phase One moved into Phase Two. This phase consisted of at least three probe sessions, without instruction. The Student IEP Checklist was provided during Phase Two probes to examine the effects of the self-monitoring checklist with picture prompts on student responses to probe questions.

Phase three procedures. If mastery was not met in Phase Two, students were given individualized booster sessions based on the IEP steps they responded to incorrectly during previous probes. The Student IEP Checklist with picture prompts was available to participants during Phase Three probes. Figure 1 displays the decision-making process for implementing Phase Two and Three procedures.

Maintenance. Maintenance data were collected, seven to 32 days after mastery criteria was met. Participants were asked questions from the probe script as in baseline and intervention probes. For participants who met criteria in Phase Two or Phase Three, the Student IEP Checklist with picture prompts was available during maintenance probes.
To determine if generalization occurred, two mock IEP meetings were conducted for each of the participant. The first mock IEP meeting occurred before baseline and the second occurred during maintenance. Members of the participants’ IEP team were invited to participate in both mock IEPs. At the high school, the job coach attended mock IEP-1 meetings for both students and mock IEP-2 for Ray’s meeting, while a regular education teacher attended Mary’s mock IEP-2. Only the special education teacher attended the Mock IEPs for middle school students. The experimenter stood-in for the local education agency representative for all mock IEPs and name cards were placed on the table to represent any missing IEP team members. To make the mock IEP meetings as authentic as possible, the special education teacher conducted the mock IEP meetings and asked probe questions to the participants. The Student IEP Checklist with picture prompts was available for students to use during mock IEPs. If participants responded incorrectly or did not respond within 10s, the special education teacher stated the correct answer and moved onto the next probe question.

Procedural fidelity. Procedural reliability data were collected by the second observer for 30% of intervention sessions for each participant. The second observer watched the video recordings and marked on the Procedural Reliability Checklist if the step was observed or heard. To determine procedural reliability, the total number of observed steps were divided by the total number of available steps and multiplied by 100 (Cooper et al., 2007). Procedural reliability data indicated a mean of 88% with a range of 70%–100%.

Results
The purpose of this study was to examine the effects of the self-monitoring checklist as a component of the Self-Directed IEP. Figure 2 presents the number of correct responses for steps of the IEP for all four participants. Results indicated a functional relation between the Self-Monitoring Checklist with picture prompts and the number of correct responses on the steps of the IEP.
Figure 2. Graph of modified Self-Directed IEP with self-monitoring checklist.
Alexander

Alexander’s data for correct responses on the steps of his IEP were baseline \((M = 0.5, \text{range} ~ 0–1)\), Phase One \((M = 0.3, \text{range} ~ 0–2)\), Phase Two \((M = 7.3, \text{range} ~ 1–16)\), and Phase Three \((M = 27.3, \text{range} ~ 26–30)\). Alexander scored zero on his maintenance probe and increased his generalization score from Mock IEP-1 \((\text{score} = 4)\) to Mock IEP-2 \((\text{score} = 29)\).

T’Lik

T’Lik’s data for correct responses on the steps of his IEP were baseline \((M = 5.3, \text{range} ~ 4–6)\), Phase One \((M = 6.5, \text{range} ~ 4–9)\), and Phase Two \((M = 26.7, \text{range} ~ 25–29)\). T’Lik scored 18 on his maintenance probe and increased his generalization score from Mock IEP-1 \((\text{score} = 4)\) to Mock IEP-2 \((\text{score} = 25)\).

Mary

Mary’s data for correct responses on the steps of her IEP were baseline \((M = 7.6, \text{range} ~ 7–9)\), and Phase One \((M = 29.3, \text{range} ~ 29–30)\). Mary met mastery criteria in Phase One. Mary scored 30 on her maintenance probe and increased her generalization score from Mock IEP-1 \((\text{score} = 9)\) to Mock IEP-2 \((\text{score} = 30)\).

Ray

Ray’s data for correct responses on the steps of his IEP were baseline \((M = 7.1, \text{range} ~ 4–13)\), Phase One \((M = 9, \text{range} ~ 4–15)\), and Phase Two \((M = 25.7, \text{range} ~ 24–27)\). Ray scored 24 on his maintenance probe and increased his generalization score from Mock IEP-1 \((\text{score} = 6)\) to Mock IEP-2 \((\text{score} = 24)\).

Social Validity

After all phases of the intervention were completed, special education teachers and students were asked to complete questionnaires on the procedures and outcomes of the intervention. All four students responded that the intervention helped them feel ready to lead their IEP meeting and they liked learning what to do at their IEP meetings. Three students responded that they knew what to do at their IEP meetings and that the Student IEP Checklist helped them know what to do.

Special education teachers and the job coach agreed with all five questions on the social validity measure \((a)\) students led the mock IEP meeting, \((b)\) students knew what to do at their mock IEP meeting, \((c)\) the Student IEP Checklist with picture prompts helped students learn to lead their IEP meetings, and \((d)\) the Self-Directed IEP with Student IEP Checklist appeared easy to use. Both special education teachers responded that they would use the Self-Directed IEP with Student IEP Checklist in their classroom.

Discussion

The purpose of this study was to examine the effects of a self-monitoring checklist as a component of the Self-Directed IEP curriculum for students with intellectual disability. Three of four participants \((\text{i.e., Alexander, T’Lik, Ray})\) did not reach mastery of 24 out of 30 correct responses to probes on the steps of the IEP until presented with the Student IEP Checklist with picture prompts in Phase Two. Mary reached mastery criteria before the Student IEP Checklist was introduced in Phase One. For Alexander, T’Lik, and Ray, the addition of a self-monitoring checklist provided a system for observing and recording their responses to the probes \((\text{Browder} \& \text{Shapiro}, 1985; \text{Cooper et al.}, 2007)\) and evaluating their progress \((\text{Agran et al.}, 2005)\). The results of this study build on the empirical research supporting the Self-Directed IEP curriculum as an evidence-based practice \((\text{Martin et al.}, 2006; \text{Test, Fowler et al.}, 2009)\) in a number of ways.

First, this study was the first to conduct a component analysis of a self-monitoring checklist as a component of the Self-Directed IEP curriculum for students with intellectual and multiple disabilities. \text{Test et al.} \text{(2004)} recommended the need for component analyses of commonly used techniques within IEP participation training to determine their efficacy. The importance of conducting an analysis of the components of evidence-based interventions is to identify which elements in an intervention are integral to changing behavior for certain students \((\text{Kennedy}, 2005)\). \text{Cook, Tankersley, and Harjusola-Webb} \text{(2008)} noted that not all...
evidence-based practices work seamlessly for all students and the necessity to consider the particular students’ strengths and needs before implementing an evidence-based practice. By evaluating an intervention with and without specific components (Ward-Horner & Sturmey, 2010), researchers can adapt the practice and demonstrate for educators how to differentiate the intervention across the classroom reaching more students and implementing strategies with fidelity.

Second, this study adds evidence to the field that students with disabilities can learn the steps to lead their IEP meetings when taught with an established curriculum. While this study focused on students with mild intellectual and multiple disabilities, previous research has demonstrated this effect with students with learning disabilities and intellectual disability (Kelley et al., 2011), emotional behavioral disorder (Snyder & Shapiro, 1997), emotional behavioral disorder and intellectual disability (Snyder, 2002), and moderate intellectual disability (Allen et al., 2001; Uphold, 2008). In addition, Arndt et al. (2006) and Martin et al. (2006) found similar effects with students with various disabilities including other health impaired, autism, and orthopedic impairment.

Third, this study extended the literature by demonstrating the effectiveness of the Self-Directed IEP for middle school-age students. Although Martin et al. (2006) included middle school-aged students in their group study, this is the first single-case study to include middle school students. Since Martin et al.’s results were not disaggregated by age, by using a single-case design, this study was able to demonstrate the positive effects of the Self-Directed IEP for two middle school students and showed both students were able to identify postsecondary goals for employment, education/training, and independent living.

Limitations and Suggestions for Future Research

There are several limitations to the findings of this study. First, all four participants were provided special education services in self-contained or pull-out settings which reduced their opportunities to share ideas and options for postsecondary employment, education, and independent living with peers without disabilities. A suggestion for future research is to examine the use of a modified version of the Self-Directed IEP (Martin et al., 1996) and other transition planning curricula in inclusive classrooms for students with and without disabilities.

Second, this component analysis was limited as it only focused on students with mild intellectual disability and multiple disabilities. Future research investigating other components and individual strategies within packaged curricula (Test et al., 2004), such as the Self-Directed IEP, could help teachers implement interventions in their classrooms with fidelity for specific disability groups.

Implications for Practice

An implication for practitioners is to be aware of students’ varying strengths and needs across the classroom so evidence-based transition planning programs such as the Self-Directed IEP can be adapted for individual students. For example, although three participants (i.e., Alexander, Mary, Ray) were identified with mild intellectual disability, each student’s strengths, needs, and abilities were very different. While some students will learn the skills as presented in the program (i.e., Mary), other students (i.e., Alexander, T’Lik, Ray), may need extra scaffolding such as using a self-monitoring checklist. Pre-planning how to differentiate instruction to maximize student learning is common in the academic world and is equally as important for transition planning.

Educators should provide opportunities for students to explore their educational and vocational dreams at an early age, especially once they are in middle school, so they can have a voice in their IEP and transition planning. Two of the participants (i.e., Alexander, T’Lik) had very little comprehension of what transition goals were or what they wanted to do after high school. For most of the baseline probes, Alexander responded by shaking his head and mouthing the words, “I don’t know.” After being taught about interests, skills, and limitations with the Self-Directed IEP, both middle school students chose long-range goals for education (i.e., “learn more about computers,” “read more books”) and employment (i.e., “work with animals,” “build houses with my dad”).

A third implication for practice is to create opportunities to extend transition planning...
activities to students with and without disabilities in the inclusive classroom (Shogren et al., 2015; Thomas & Dyckes, 2011; Wehmeyer, 2016). Many of the skills taught in these programs are valuable to all students, regardless of disability, including self-determination and choosing goals for their future.

References

Snyder, E. P. (2002). Teaching students with combined behavioral disorders and mental retardation to lead their own IEP meetings. *Behavioral Disorders*, 27, 340–357.

Snyder, E. P., & Shapiro, E. S. (1997). Teaching students with emotional/behavioral disorders the skills to participate in the development of their own IEPs. *Behavioral Disorders*, 22, 246–259.

Received: 21 December 2016
Initial Acceptance: 22 February 2017
Final Acceptance: 1 April 2017