Job-Preference and Job-Matching Assessment Results and Their Association with Job Performance and Satisfaction among Young Adults with Developmental Disabilities

Julie Hall
Davis School District, Farmington, UT.

Robert L. Morgan and Charles L. Salzberg
Utah State University

Abstract: We investigated the effects of preference and degree of match on job performance of four 19 to 20-year-old young adults with developmental disabilities placed in community-based job conditions. We identified high-preference, high-matched and low-preference, low-matched job tasks using a video web-based assessment program. The job matching assessment provided index scores on degree of match between job requirements and participant skill levels. Each participant was subsequently placed in a randomized sequence of 30-min sessions on one high-preference, high-matched job and one low-preference, low-matched job. A job coach instructed individual participants to perform jobs, teaching tasks when necessary. We collected data on (a) productivity, (b), accuracy of tasks performed, (c) job satisfaction and (d) an independent observer’s judgment. We found higher productivity, accuracy and job satisfaction across all participants on the high-preference, high-matched jobs. We discuss results in terms of assessment of preference and matching to facilitating self-determination.

In recent years, professionals working in special education and vocational rehabilitation have placed increased emphasis on providing young adults with developmental disabilities, such as intellectual disability and autism spectrum disorder, with opportunities to identify preferences that serve to shape their career paths. Making choices and identifying preferences is one component of self-determination, which Wehmeyer (2005) defines broadly as “volitional actions that enable one to act as the primary causal agent in one’s life and to maintain or improve one’s quality of life” (p. 117). The Individuals with Disabilities Education Improvement Act (IDEIA, 2004) mandates that transition planning be based on the individual’s needs, while accounting for strengths, preferences, and interests. To be empowered as primary causal agents to determine their futures, young adults with developmental disabilities in transition must, at minimum, state their preferences to begin directing activities leading towards selected employment, career, and life goals.

Research has shown that identifying preferred job tasks increases productivity for participants with developmental disabilities (Bambara, Ager, & Koger, 1994; Morgan & Horrocks, 2011; Parsons, Reid, Reynolds, & Bumgarner, 1990). For example, Parsons et al. found that work performance of participants with significant intellectual disability almost doubled when given their choice of job task or when assigned a preferred job task. Morgan and Horrocks investigated the effect of job preference on on-the-job performance in a community setting among adults with intellectual disability and concluded that working in a chosen job increased both on-task behavior and satisfaction, at least for two of three participants.

Findings from these studies compel practitioners to acknowledge and support an individual’s preferences for employment. Prefer-
ences are important both for determining initial job sampling and long-term career pathways (Field, Martin, Miller, Ward, & Wehmeyer, 1998). However, selection of a preferred job may not predict increased performance if the job tasks require skills beyond one's skill level, or skills different from one's repertoire. Morgan and Horrocks (2011) worked with one participant who more frequently chose the low-preference job as “the one I liked better today.” Researchers noted that even though this participant selected the job as highly preferred, he struggled with the task requirements and demonstrated higher productivity on a low-preference job. The researchers speculated that a participant who works in a high-preference job who does not have the prerequisite skills may alter his/her preferences, which could result in lower productivity and reduced job satisfaction. Although these speculations were generated from only one participant’s data, they suggest that practitioners may consider assessing frequently to update an individual’s preferences, and examining a companion assessment: degree of job match with preferred jobs.

Job matching has been defined as an assessment of job seeker knowledge and skills in relation to job requirements (Ellis, Rusch, Tu, & McCaughrin, 1990). Roessler (2002) noted that job matching should not only involve finding an entry-level job in the short-term, but also, exploring career opportunities in the long-term. Many job matching services are available on the Internet. Most services include an assessment of one’s ideal job, work experience, and self-reported skills (e.g., hiringhive.com). The outcome is usually a list of occupations that are best-matched to interests, experience, and skills. Although web-based job assistance is available for individuals without disabilities (e.g., www.careeronestop.org; www.peopleresources.org), only one site was found providing comprehensive assessment of preferences and job matching specifically designed for individuals with developmental disabilities (i.e., www.yesjobsearch.com). Transition teachers, rehabilitation counselors, and other stakeholders can help individuals with developmental disabilities to take advantage of Internet job matching services, but a website enabling a young adult to “self-determine” one’s career pathway might be more desirable. A potential drawback to some Internet sites is that they require high levels of reading (e.g., responding to questions and rating scales, decoding vocational language) that may inhibit understanding for some users with disabilities.

On a web-based site for individuals with developmental disabilities, Morgan (2008) first assessed preferences, then degree of match to preferred jobs. To assess job matching, the Occupational Information Network (O*NET: National Center for O*NET Development, 2010) was used to identify 106 dimensions associated with jobs from the preference assessment. A rater familiar with the participant’s skills, such as a teacher, parent, or job coach, rated the participant’s skill level for each of 106 dimensions. On this web site, the computer program first multiplied the rating for each job dimension times the O*NET importance score, then summed all scores across 106 dimensions. Summed scores were divided by the total possible score to yield a proportion score ranging from 0.00 to 1.00. Second, the program ranked the preferred jobs in order from high to low match. The outcome was a list of job match index scores for each preferred job.

Research is needed to investigate whether preferred, well-matched jobs result in higher productivity and greater satisfaction regarding community jobs than low preference, low-matched jobs. Although the relationship is intuitive, very little data are available for individuals with developmental disabilities. The combination of a job preference and job matching assessment may serve as a useful predictor of productivity.

The purpose of this study was to determine whether level of preference and degree of match were associated with job performance and satisfaction for young adults with developmental disabilities.

Method

Participants

The researchers selected four 19–20-year-old young adults with mild to moderate intellectual disability from among 100 students enrolled in a post-high school transition program. A common component of the post-high
school program was for students to rotate through community jobs. In collaboration with transition program teachers, the researchers selected students who (a) were able to identify job and job task preferences using verbal English, pointing responses, or other discriminable behaviors; (b) exhibited basic vocational skills, including adequate behavioral control for working in a public setting and following simple verbal or modeled instructions; (c) possessed at least 6 months combined part-time employment training experience across two or more community jobs or job tasks; and (d) attended the program on a regular basis.

Kristin was a 19-year-old Caucasian female with Down syndrome. Based on recent testing results, she had obtained a full-scale IQ of 47 with academic scores ranging from 1st to 3rd grade performance. She was able to verbally express her basic needs. Kristin struggled with choosing realistic careers. She learned new tasks quickly and completed them accurately; however, she did not consistently follow instructions or accept feedback from supervisors.

Mark was a Caucasian 20-year-old male with traumatic brain injury. Test results indicated a full-scale IQ of 69, an adaptive behavior level score of 37, and academic scores ranging from 4th to 6th grade performance. He verbally expressed needs. Mark learned new skills relatively quickly, but required repetition or prompts to retain the skills. Without close supervision, Mark was easily distracted by coworkers and by conversations around him.

Natalie was a Caucasian 20-year-old female with autism spectrum disorder and a visual impairment. No IQ score was available in available records. She verbally expressed needs. She read at about the 5th grade level and performed math at the 3rd to 4th grade level. With glasses, Natalie read books and accessed a computer screen at 25 cm without additional magnification. Natalie’s depth perception was compromised; however, she accurately completed activities requiring hand/eye coordination, fine motor skills and depth perception such as cutting on a line, lacing or putting templates on a ring.

Conner was a Caucasian 20-year-old male with autism spectrum disorder. Test results indicated a full scale IQ score of 58, with academic scores indicating 1st to 3rd grade performance. Conner verbally expressed his needs. He required supervision to stay on task or move to a new task.

Settings

Participants completed the web-based job preference assessments using a computer in a 4 m by 4 m office located at the participants’ transition program. A job coach familiar with the participant completed the job matching assessment. Participants worked in community-based job settings including (a) a deli located within a supermarket; (b) a carpentry shop in an industrial strip mall; (c) a Mexican restaurant; (d) an electronics lab located at a technology college; (e) an elementary school library; and (f) a dining room located in an assisted living center.

Dependent Variables and Measurement

Productivity. For a given job task, productivity was defined as the number of tasks or subtasks completed to criteria specified by the employer or supervisor as compared to the quantity completed by a typical adult employee in the same amount of time. Each task was analyzed to produce a sequence of subtasks and task steps and criteria required to complete the task correctly (for task analyses, contact the first author). The first researcher developed the subtasks as well as task steps based on the standard expected by the employer at the deli, carpentry, restaurant, dining room and library. At the electronics lab, the first researcher developed productivity guidelines based on supervisor input and industry standards from the University of California at Berkeley’s Basic Semiconductor Circuits Manual (2010).

Productivity was measured using a per opportunity measure of the number of discrete tasks independently completed to criteria divided by the total number of tasks completed by a typical adult employee and multiplied by 100. Trend function lines were calculated in Excel® for productivity and accuracy. A trend function line is a straight line running from the first to last session on a graph, formed using the method of least squares (i.e., a line that minimizes variability on each of two
sides) (Jiang, 1998), to capture the direction and slope of the numeric variable.

The first researcher and a job coach measured productivity in 10-min probes. For each participant, there were at least four 10-min productivity probes conducted per job site throughout the study. Productivity probes were conducted either at the beginning or the end of the session. Scheduling and timing of the probes remained consistent across job sites. During the probes, the job coach told the participant to “work on your own. I will not be able to help you.” If the participant was unable to correctly complete a task or had a question, he/she was told to solve the problem or to move on to the next task. The researcher and job coach recorded the number of tasks or subtasks completed independently based on specified criteria during the probe.

Accuracy of tasks performed. Accuracy was defined as the number of tasks completed correctly compared to the total number of tasks completed during a set amount of time. Accuracy was measured by dividing tasks completed correctly by total tasks completed and multiplying by 100 to obtain a percentage. Trend function lines were calculated for each set of data.

Choice/Satisfaction. Choice was defined as the response to the question: “Which job did you work better at today?” Satisfaction was defined as the participant’s response to the question: “Which job did you like better today?” The job coach asked individual participants these two questions after leaving the second and final job site each day. For both measures, a choice was scored if the participant pointed to a picture of one job site or verbally stated the name of one job. The total number of sessions that the high-preference, high-match job was identified by a participant as the job he/she “worked better at” and “liked better” was divided by the total number of sessions a selection was offered to obtain a percentage score for the participant’s choice and satisfaction.

As an additional measure of job matching, the first researcher asked the job coach at the end of the study to identify which job she felt was the better match for each participant. The job coach was naïve to the purpose of the study, so this provided an unbiased measure of job match.

Procedure

Web-based job preference assessment. During completion of the job preference portion of the assessment, individual participants watched selected videos of jobs, followed a narrator’s instructions to “choose the job you want”, then selected an icon (thumbs up or thumbs down) to indicate their preference. High preference was defined as selecting thumbs up. The participant reduced the list of high preference jobs to three, after which the participant selected preferred tasks involved in the jobs for each job on the website. A “more info” tab showed photos and print descriptions of critical job tasks for each job as identified by O*NET. The first researcher answered questions, assisted with technology issues, and printed out a list of preferred jobs and preferred tasks.

Thereafter, the first researcher and individual participants repeated the job preference assessment to identify low preference jobs and then low preference job tasks. Low preference jobs and tasks were defined as those least preferred by the participant. The first researcher directed the participant to “choose the jobs you don’t like” and participants watched videos. If participants identified jobs they did not want, the researcher selected that job. The three least-preferred jobs were used in the low-preference job-match assessment.

Web-based job matching assessment. Job coaches who were familiar with the job skills of the participants completed the job-matching assessment. They rated a participant’s skills as poor, fair or good on each of 106 job dimensions in the assessment. Dimensions included knowledge and skill constructs listed in O*NET, such as judgment and decision-making, critical thinking, money skills, time-telling, reading comprehension, and speech clarity, among others. Each dimension name was accompanied by a brief definition. A proportion score from 0.00 to 1.00 was computed to indicate degree of job match for each of three high-preference and each of three low-preference jobs. A higher proportion score denotes a better match.
Development of job sites. Based on the results of the job-preference and job-matching assessment, the first researcher developed two job conditions for each participant. A high-preference, high-match job condition consisted of one for which the participant’s skills most closely matched those required for the job. A low-preference, low-match job was one for which the participant indicated a low preference and for which his or her skills were a low match with job requirements. For the purposes of this study, high-match jobs were those with the highest proportion score and low-match jobs were those with the lowest proportion score.

The first researcher met with employers to gain permission to perform jobs in the work site. She researched industry standards of productivity for each job task. For example, in carpentry, measurements for sanding wood were required to be within 1/32 in (0.79 mm). The first researcher and job coach practiced the tasks, as needed, in order to perform the task at the level required by the standards. The first researcher or job coach then performed the task for 10 min to determine the standard against which each participant’s performance would be compared. In each case, the employer confirmed the standard set by the researchers.

Work sessions. We arranged for individual participants to perform one high-preference, high match task and one low-preference, low-match task each day in community job settings according to a randomized schedule as shown in Table 1.

Participants worked on each job for 30 min. Sessions were randomly scheduled by toss of a coin for a participant in the first week. As shown in Table 1, the schedule for the second week was counterbalanced to reduce potential reactivity to sequencing of jobs.

Prior to beginning the first session, the first researcher informed participants that they would have a job coach check their work and answer any questions. If participants made a mistake, their job coach prompted them to complete the task correctly. If participants had questions, they were told to ask the job coach.

The first researcher explained to participants they could request a 1-min break at any time, but afterwards, would need to resume work. Participants were told they could request as many breaks as they wanted. Some break activities were prevented (e.g., making phone calls). After working at least 10 min, the participants were told they could request to stop work altogether. Requesting breaks or stopping work did not result in negative consequences. If the participant requested a break, the job coach/data collector began timing for 1 min. After 1 min, the job coach/data collector asked, “Are you ready to work now?” If the participant said no, or refused to answer or to restart work, the job coach began timing again. If the participant refused to answer or work for more than 3 min, and if the participant had been at that work site for more than 10 min, the job coach asked the participant if he or she wanted to stop working. If the participant said yes, or otherwise requested to stop working, the job coach terminated the session.

Teaching tasks. The job coach taught job tasks to individual participants in an effort to complete all steps of the task to the employer’s standard. If the participant did not com-
plete a task, the job coach used verbal, gestural or partial physical prompts as well as modeling to teach job tasks. The job coach remained in close enough proximity to the participant to visually determine if the participant was performing the job correctly.

Interobserver Agreement (IOA)

The first researcher trained the job coach to collect data by providing and discussing behavior definitions and recording behaviors (see Dependent Variables above) in community-based work settings. The first researcher and job coach conducted observations of productivity and accuracy probes until they achieved 90% IOA on each behavior. IOA was calculated in 98% of productivity and accuracy probes. Total count IOA was calculated by dividing the agreements on task steps completed to specifications by agreements plus disagreements and multiplying by 100. Productivity IOA ranged from 73.68% to 100% with a mean of 97.35%. The low score occurred in the first productivity probe at the electronics lab with Conner.

Treatment Integrity

Independent observers recorded data based on a checklist on how the first researcher conducted activities (e.g., presents scripted instructions, answers participant’s questions, redirects participant if participant asks for help, and so forth). A percentage score was calculated by dividing the number of items marked correctly by the total number of items and multiplying by 100. Observers collected data in 43% of total sessions. Observer data indicated that the first researcher completed 100% of steps correctly. In a second measure of integrity, the first researcher recorded data based on the job coach’s activities to ensure that she followed procedures as outlined. A checklist was constructed with items similar to those for the first researcher (e.g., instructed participants on tasks, allowed breaks when requested, redirected participants if conversing on topics not related to work, and so forth). Data were recorded in 29% of total sessions across all conditions. Job coach integrity data ranged from 87.50% to 100% with a mean of 98.70%.

Results

Data from the job preference and matching assessments are shown in Table 2. Job matching index scores were higher for high-preference, high-matched jobs than low-preference, low-matched jobs. Differences between index

<table>
<thead>
<tr>
<th>Participant</th>
<th>High-preference Jobs</th>
<th>Proportion Score</th>
<th>Low-preference Jobs</th>
<th>Proportion Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kristin</td>
<td>Restaurant Cook</td>
<td>0.52</td>
<td>Carpenter</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>Prepare, season, cook food</td>
<td></td>
<td>Sand surfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Follow food orders</td>
<td></td>
<td>Measure and mark locations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clean food prep area</td>
<td></td>
<td>Measure and cut material</td>
<td></td>
</tr>
<tr>
<td>Mark</td>
<td>Restaurant Cook</td>
<td>0.54</td>
<td>Electronics Assembler</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>Prepare, season, cook food</td>
<td></td>
<td>Check functions of electrical parts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Follow food orders</td>
<td></td>
<td>Connect wires</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cut vegetables, meat, etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natalie</td>
<td>Library Worker</td>
<td>0.43</td>
<td>Carpenter</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>Check out books</td>
<td></td>
<td>Install door framework</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scan books</td>
<td></td>
<td>Measure and cut material</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use barcode scanners</td>
<td></td>
<td>Sand surfaces</td>
<td></td>
</tr>
<tr>
<td>Conner</td>
<td>Dining Room Attendant</td>
<td>0.58</td>
<td>Electronics Assembler</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>Serve food and drink</td>
<td></td>
<td>Connect wires</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Replenish food at tables</td>
<td></td>
<td>Check functions of electrical parts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Set tables</td>
<td></td>
<td>Dry parts with an air hose</td>
<td></td>
</tr>
</tbody>
</table>

scores ranged from 0.16 (Kristin) to 0.04 (Natalie). In the latter case, the assessment suggests that Natalie’s skills for the high-preference job were only slightly better matched than skills for the low-preference job.

Participants worked between eight and 20 total sessions. Numbers of sessions for some participants were cut short due to scheduling issues (e.g., job coach schedule, family vacation, etc.). Performance of individual participants is described below.

Kristin’s Performance

Kristin worked in a deli preparing mini-sandwiches and in a carpentry shop measuring and marking wood for garden trellises. Kristin’s job matching score for her high-preference, high-matched job (deli) was 0.52. Tasks included (a) preparing, seasoning, and cooking food; (b) following food orders; and (c) cleaning food prep area as her preferred tasks. The score for her low-preference, low-matched job (carpenter’s helper) was 0.36. Tasks included (a) sanding surfaces, (b) measuring and marking locations, and (c) measuring and cutting material.

Productivity data for Kristin are presented in Figure 1. Productivity on her high-preference, high-matched job increased from 28.57% to 35.71% on the fourth and final probe. Productivity on her low-preference, low-matched job was 0% for all four sessions.

Prior to the last productivity probe at the carpentry shop, Kristin commented, “I just want to get my work done so I can just get out of here and not come back.”

Accuracy data (i.e., % of tasks completed correctly) for Kristin are presented in Figure 2. From Sessions 1 to 4, accuracy on her high-preference, high-matched job trended upward from 80% to 85.71%. Accuracy on her low-preference, low-matched job was 0% for all four sessions.

In terms of choice (“Which job did you work better at today?”) and satisfaction (“Which job did you like better today?”), Kristin selected the high-preference, high-matched job in all opportunities. When questioned at the conclusion of the study, Kristin indicated she preferred and worked better at the deli because she liked working with food and “the sandwiches are delicious.” The job coach identified the deli (high-preference, high-matched) as Kristin’s better-matched job.

Kristin, unlike other participants, requested breaks. She requested a total of 78 min of breaks (18.57% of total work time), all during the low-preference, low-match job.

Mark’s Performance

Mark worked in a Mexican restaurant preparing fried ice cream balls and in an electronics lab at a technical college soldering wires to posts. Mark’s job matching score for his high-preference, high-matched job (restaurant cook) was 0.54. Tasks included (a) preparing, seasoning and cooking food; (b) following food orders; and (c) cutting vegetables and
meats. The score for his low-preference, low-matched job (electronics assembler) was 0.39. Tasks included (a) checking functions of electrical parts, (b) connecting wires, and (c) drying parts with an air hose.

Productivity data for Mark are presented in Figure 3. Productivity on his high-preference, high-matched job increased across sessions from 0% to 57.14%. Productivity on his low-preference, low-matched job was 0% for all sessions.

Accuracy data for Mark are presented in Figure 4. From Sessions 1 to 4, accuracy on his high-preference, high-matched job increased from 0% to 100%. Accuracy on his low-preference, low-matched job was 0% for all four sessions.

Mark’s choice of his preferred and better-matched job varied throughout the study. Mark chose and was more satisfied with the high-preference, high-matched job on 61.54% of choice opportunities. On remaining occasions, he chose the low-preference, low-matched job. On 76.92% of choice opportunities, Mark chose the last job site he had visited, suggesting a potential recency effect. At the conclusion of the study, Mark indicated he sometimes chose electronics assembly because it was “new” and “fun.” He indicated he sometimes chose the restaurant because it was “more fun” and he “loved making fried ice cream.” The job coach identified restaurant cook (high-preference, high-matched) as Mark’s better-matched job.

Natalie’s Performance

Natalie worked in a library and as a carpenter’s helper. Natalie’s job matching score for her high-preference, high-matched job (library) was 0.43. Tasks included (a) checking out books, (b) scanning books, and (c) using barcode scanners. The score for her low-preference, low-matched job (carpenter’s helper) was 0.39. Tasks included (a) installing door framework, (b) measuring and cutting material, and (c) sanding surfaces.

Productivity data for Natalie are presented in Figure 5. Productivity on her high-preference, high-matched job increased across sessions from 61.76% to 69.61%. Productivity on her low-preference, low-matched job varied from 0 to 20%.
Accuracy data for Natalie are presented in Figure 6. Accuracy on her high-preference, high-matched job maintained at 100% across all sessions. Accuracy on her low-preference, low-matched job fluctuated from 0% to 50% with a mean of 19.44%. She ended with 0% accuracy on Session 6 and generally struggled with sanding, having difficulties completing a full stroke when sanding an edge of wood.

In regard to choice and satisfaction, Natalie chose the library (high-preference, high-matched) in all opportunities. At the conclusion of the study, Natalie indicated she chose the library because she liked “to read and handle books.” She also indicated she was familiar with libraries and that carpentry was “not her thing.” Natalie commented “I hope that it (the carpentry shop) burns down before we get there” and “Maybe it (the shop) will be locked”. The job coach identified the library work (high-preference, high-matched) as Natalie’s better-matched job.

Conner’s Performance

Conner worked as a dining room attendant and in an electronics lab at a technical college soldering wires to posts. Conner’s job matching score for his high-preference, high-matched job (dining room attendant) was 0.59. Tasks included (a) serving food and drink, (b) replenishing food at tables, and (c) setting tables. The score for his low-preference, low-matched job (electronics lab) was 0.47. Tasks included (a) connecting wires, (b) checking functions of electrical parts, and (c) drying parts with an air hose.

Productivity data for Conner are presented in Figure 7. Although at relatively low levels throughout, productivity on his high-preference, high-matched job increased from 6.25% to 31.25%. Productivity on his low-preference, low-matched job varied from 0% to 7.14%.

Accuracy data for Conner are presented in Figure 8. From Sessions 1 to 6, accuracy on his high-preference, high-matched job trended upward from 0% to 100%. Accuracy in Sessions 7 through 10 averaged 85%. Accuracy on his low-preference, low-matched job ranged from 0% to 50%, averaging 12.5%.

Conner’s performance improved over the course of 10 sessions. Productivity trended upward on both jobs, but with a steeper slope on the high-preference, high-matched job. His accuracy increased similarly on both jobs, with the steeper slope and much higher levels on the high-preference, high-matched job.
In terms of choice and satisfaction, Conner selected the high-preference, high-matched job in all opportunities. Conner indicated he chose the dining room because he preferred the job and stated that he was “a professional at setting up the dining room.” However, the job coach selected the low-preference, low-matched job of connecting wires as Conner’s better-matched job, citing slow work speed when setting up dining room tables and faster work speed at the electronics lab as her rationale.

Discussion
This study sought to determine whether level of preference and degree of match were associated with job performance and satisfaction for young adults with developmental disabilities. Results indicate that high-preference, high-matched jobs were associated with higher productivity, accuracy and satisfaction in all but a few cases. For all four participants, productivity was higher, although it ranged from high to low in terms of comparison to the employer standard set for a typical adult employee. Additionally, accuracy of tasks performed was higher in all four cases. Positive trends were evidenced in both productivity and accuracy for high-preference, high-matched jobs for all participants. High-preference, high-matched jobs were associated with choice and higher satisfaction for three out of four participants. The single exception was Mark, who occasionally chose the low-preference, low-match job (electronics assembler), even though his productivity and accuracy were far higher in the high-preference, high-matched job (restaurant cook). The job coach, naive to preferences and degree of match in the study, selected high-preference, high-matched jobs for three out of four participants. Generally, the findings support the hypothesis that high-preference and high match would seem likely to more strongly predict job productivity. Certainly more research on this topic would be beneficial.

One caveat is noteworthy regarding the findings in this study: identifying high-preference, well-matched jobs does not mean that young adults, transition specialists, and other stakeholders have reached a final destination in career planning. Obtaining a high preference, high-matched job should only be the first step on a stairway of career path opportunities. Indeed, it may be detrimental to “stay put” indefinitely in a preferred, matched job because to do so would preclude advancement and the development of what might otherwise become future career directions.

There are several limitations to this study. First, with only four participants, generalizability of the results is severely limited. Replication will be needed to more fully establish a positive correlation between job match and job productivity, as well as the usefulness of a web-based job-matching program. Researchers may want to consider including participants with more and less severe cognitive disability and from varied cultural and ethnic backgrounds. Second, only four high-preference and four low-preference sessions were conducted for two participants. Increased pointing degree of match between skills and job requirements. Mark’s results in particular suggest that job match, as predicted by the assessment, may have accounted for his increased productivity on the high-preference, high-matched job more than job preference, as his preference fluctuated throughout the study. The concept of a job match index score for one’s preferred job is relatively new in transition and special education. The results of this study support the importance of a job match assessment for successful employment for individuals with developmental disabilities. While the impact of job preference plus degree of match has been explored to some extent (Morgan, 2008), the research is in its infancy. It would seem logical that an individual’s preference for a job or a set of job tasks might enhance the probability of success, but it also seems unlikely that preference would, of itself, be sufficient. After all, one might like a job but not have the skills to perform it adeptly. The combination, however, of high preference and high match would seem likely to more strongly predict job productivity. Certainly more research on this topic would be beneficial.

One caveat is noteworthy regarding the findings in this study: identifying high-preference, well-matched jobs does not mean that young adults, transition specialists, and other stakeholders have reached a final destination in career planning. Obtaining a high preference, high-matched job should only be the first step on a stairway of career path opportunities. Indeed, it may be detrimental to “stay put” indefinitely in a preferred, matched job because to do so would preclude advancement and the development of what might otherwise become future career directions.

There are several limitations to this study. First, with only four participants, generalizability of the results is severely limited. Replication will be needed to more fully establish a positive correlation between job match and job productivity, as well as the usefulness of a web-based job-matching program. Researchers may want to consider including participants with more and less severe cognitive disability and from varied cultural and ethnic backgrounds. Second, only four high-preference and four low-preference sessions were conducted for two participants. Increased
numbers of sessions may have provided clearer patterns of data for productivity, accuracy, and satisfaction. Job preference, match, and satisfaction may, in some cases, vary as a function of amount of work experience (Szymanski, Enright, Hershenson, & Ettinger, 2003). Third, tasks performed by participants may not realistically represent the range of tasks in an actual job. Therefore, preferences and degree of match for job tasks do not necessarily equate to preferences and match for the complete jobs. For example, connecting electrical wires to posts, although part of an electronics assembler’s job description, hardly represented the complexity of tasks required for the entire job. Future researchers should include a more extensive variety of tasks in each job condition to more realistically characterize jobs.

Findings from this study underscore the importance of frequent assessment of preference and job match. In transition from school to work, only one assessment must be administered each year starting at age 16 (IDEA, 2004). Yet, we believe that this is inadequate because preferences and degree of skill match may change during the performance of a job. As Mark became more familiar with an electronics job, he became more interested in it. On a related note, young adults with developmental disabilities need exposure to many different types of job situations with job coaches who are well-trained in increasing the worker’s skills and who are able to support the worker during the skill acquisition process.

This study was designed to allow participants to identify job preferences. As such, it was consistent with one element of the philosophy of self-determination. These findings lend credence to the importance of identifying high-preference, well-matched jobs by demonstrating an association with increased performance on the job. Paying close attention to self-determined job preferences appears to be associated with increased productivity, accuracy, and satisfaction, which in turn, may relate to improved quality of life.

Future longitudinal research should determine if job satisfaction or performance remains high among young adults with disabilities placed on jobs identified as preferred and high-matched following several weeks or months on the job. Finally, future research would be useful to ascertain if preferred, high-matched jobs provide more opportunity for advancement in pay or status in an organization.

References

R. M. Parker (Eds.), *Work and disability: Issues and strategies in career development and job placement* (pp. 91–154). Austin, TX: Pro-Ed.

Received: 23 August 2012
Initial Acceptance: 20 October 2012
Final Acceptance: 15 January 2013