Effects of Self-Monitoring and Recruiting Teacher Attention on Pre-Vocational Skills

Christina A. Rouse
The Ohio State University

Julie M. Everhart-Sherwood
Westerville City Schools, Ohio

Sheila R. Alber-Morgan
The Ohio State University

Abstract: This study examined the effects of teaching self-monitoring and recruiting teacher attention on the acquisition, generalization, and maintenance of pre-vocational tasks by two sixth grade boys with moderate to severe intellectual disability. While completing pre-vocational tasks (e.g., sorting hangers by size, weighing amounts in ounces), the students were taught to use a picture prompt checklist to self-monitor the accuracy with which they completed each task. Upon independent completion of the task, the students were taught to recruit their teacher’s attention to obtain feedback and reinforcement. The dependent variable was the number of steps completed accurately out of 10 total. Six of the 10 steps were the procedures for completing the prevocational task, and the other four steps were the procedures for recruiting teacher attention. A multiple probe across skills design demonstrated that the intervention was functionally related to increased accuracy of pre-vocational task performance and increased accuracy of recruiting responses for both students. Additionally, one of the two students maintained high percentages of accuracy in the maintenance condition when the self-monitoring picture prompt checklist was discontinued.

Self-monitoring is a procedure in which an individual systematically observes his or her own behavior for the purpose of producing and assessing behavior change (Cooper, Heron, & Heward, 2007). For example, people can use self-monitoring as a way to increase their desired behaviors (e.g., studying, exercising, giving compliments) or decrease their undesired behaviors (e.g., overeating, smoking, complaining). One of the great benefits of self-monitoring is that it enables people to function more independently because it puts them in control of their own behavior change. Independent functioning is a critical need and important goal for all children with disabilities. Fortunately, children with disabilities can successfully learn how to self-monitor a wide range of their academic, social, daily living, and vocational behaviors. For example, self-monitoring has been effective for improving written expression of fourth graders with learning disabilities (Stotz, Itoi, Konrad, & Alber-Morgan, 2008), reading comprehension of high school seniors with learning disabilities (Crabtree, Alber-Morgan, & Konrad, 2010), direction-following of kindergarten students at risk for learning problems (Bialas & Boon, 2010), on-task behavior and academic productivity of elementary students with ADHD (Harris, Friedlander, Saddler, Frizzelle, & Graham, 2005), and daily living skills of adolescents with severe intellectual disability (Wacker, Berg, Berrie, & Swatta, 1985).

Self-monitoring can be especially useful for students with moderate to severe intellectual disability because they tend to struggle with independent functioning across home, vocational, and community settings. Early self-monitoring research demonstrated positive outcomes for students with moderate to severe intellectual disability. For example, Wacker and Berg (1983) taught five adolescents with intensive educational needs to use picture prompts to self-monitor their performance of assembly and packaging tasks. Re-
sults demonstrated that all five students completed 100% of steps accurately after training and maintained proficiency with those skills for up to four weeks. These findings were supported by Wacker et al. (1985) in which three adolescents with severe intellectual disability were taught to use a picture prompt package to complete three complex vocational or daily living tasks. After training, all three students achieved 100% accuracy of task completion, generalized task completion to other settings, and maintained high rates of accuracy over three to four months. In a more recent study, Agran et al. (2005) taught six middle school students with moderate to severe intellectual disability, who were included in a general education classroom, to use a self-monitoring checklist to record direction-following and work completion by marking a plus or minus sign after performing each step. Results demonstrated high levels of accuracy for up to 20 maintenance sessions following intervention. These studies demonstrate that students with the greatest need for instructional support can learn to monitor their own behavior.

Combining self-monitoring with other strategies can increase the effectiveness of behavioral interventions. For example, several studies have combined self-monitoring or self-assessment with recruiting reinforcement. Recruiting reinforcement is a procedure in which students signal teacher attention for the purpose of obtaining feedback and praise after they have completed a task or activity (Alber & Heward, 2000). Recruiting reinforcement has been demonstrated to increase the academic performance of fourth graders with developmental disabilities completing spelling assignments (Craft, Alber, & Heward, 1998), middle school students with learning disabilities completing math assignments (Alber, Heward, & Hippler, 1999), elementary students with behavior disorders completing math assignments (Alber, Anderson, Martin, & Moore, 2004), preschoolers with developmental delays completing in-class transition skills (Connell, Carta, & Baer, 1993), and adolescent girls in a maximum security institution completing vocational tasks (Seymour & Stokes, 1976).

Self-monitoring combined with recruiting attention has also demonstrated promising results for individuals with severe intellectual disability. Mank and Horner (1987) taught six young adults with severe disabilities to self-monitor and self-assess their vocational task completion (e.g., bussing tables, washing dishes, restocking dishes), and then recruit attention and feedback by taking their self-recording forms to their supervisors. Results demonstrated that productivity increased when recruiting was combined with self-monitoring compared to self-monitoring without recruiting. In another study, Brooks, Todd, Tofflemoyer, and Horner (2003) taught a 10-year-old girl with Down syndrome to self-monitor her on-task behavior by responding to tape-recorded signals. While completing her academic work, an audible signal prompted her to record on a self-monitoring card whether or not she was on task. The self-monitoring card also provided a prompt to recruit adult attention when her work was complete. Results demonstrated high rates of on-task behavior compared to her performance in baseline.

Although previous research has demonstrated positive effects of combining self-monitoring with recruiting reinforcement for individuals with moderate to severe intellectual disability, more research with this population is needed. This study was designed to examine the effects of self-monitoring combined with recruiting teacher attention on pre-vocational task completion for students with moderate to severe intellectual disability. Specifically, this study was designed to answer the following research questions. What are the effects of a self-monitoring and recruiting training package on the number of pre-vocational task steps and recruiting steps completed accurately by middle school students with moderate to intensive disabilities? Can middle school students with moderate to intensive disabilities generalize the use of a self-monitoring checklist to other tasks without additional training? What are the effects of the self-monitoring and recruiting training package on maintenance of pre-vocational skills?

Method

Participants and Setting

Participants were two 12-year-old, sixth graders identified with moderate to severe educa-
tional needs who attended a suburban, public middle school. Kyle was diagnosed with Down syndrome, and Rob was diagnosed with autism. Both students exhibited significant deficits across academic, social, communication, and functional skills. They spent the majority of each school day in a self-contained classroom for students with multiple disabilities. Both students received services for adaptive physical education, speech and language therapy, and occupational therapy. Kyle also received physical therapy services. Kyle and Rob attended specials (i.e., music, physical education, art) and lunch with typically developing peers daily.

Data were collected in the special education classroom two to three days each week from 1:00 to 1:50 while the students completed independent pre-vocational tasks. The primary data collector was a doctoral student with 10 years of teaching experience. She observed and recorded the target students’ behaviors and collected treatment integrity data. The teacher, who had a master’s degree in special education and eight years of teaching experience, conducted the training and implemented the experimental procedures in each condition. During data collection, the following individuals were present in the classroom: the primary data collector, the teacher, the two target students, two instructional assistants, and one other student.

Materials

Task prompts on job boards. A job board with three task completion prompts was placed on each student’s desk (see Figure 1). The job board was 6 × 3-in. piece of poster board, and the task completion prompts were 2 × 2-in. pictures that were attached with Velcro to the job board horizontally. The prompts, which included both pictures and words, were created by the special education teacher using Boardmaker® software. Kyle was provided with picture prompts for bundling, measuring, and mail sorting, and Rob was provided with picture prompts for weighing, ABC sorting, and hanger sorting. The students removed each picture from the job board after completing the task and receiving feedback from the teacher.

Self-monitoring picture prompt checklist. During the pre-intervention training and intervention conditions, the students were provided with a self-monitoring picture prompt checklist that consisted of Boardmaker® pictures and words (see Figure 2). The checklists were located on each student’s desk to allow them to self-check for accuracy and completeness of the task. There were six picture prompt steps on a strip of paper: (a) do your work, (b) look at the picture, (c) check your work and fix, (d) raise your hand, (e) quietly wait for the teacher, and (f) put bin away.

Task bins. Task bins contained the materials needed to complete each task. A total of six bins were used, three for each student. The task bins were located on two shelves in the classroom the students could easily access, and were labeled with the same Boardmaker® pictures used on the students’ job boards. Kyle used the following task bins: bundling, measuring, and mail sorting. The materials for bundling consisted of a paper bag containing 12 toilet paper tubes and four rubber bands with a picture label. The materials for measuring consisted of transparent plastic bin with
three measuring cups marked with different measurement requirements, a container of rice, and a metal spoon. The materials for mail sorting consisted of a cardboard filing box with slots labeled with each zip code and envelopes with address labels.

Rob used the following task containers: weighing, ABC sorting, and hanger sorting. The materials for weighing consisted of a transparent plastic container with a plastic scale that measured ounces, a Ziplock baggie labeled “2 ounces,” and colored wooden cubes. The materials for ABC sorting consisted of a filing box with five envelopes and note cards. The five envelopes were each labeled with a letter A through E, and each note card had a different food word written on it for alphabetizing. The materials for hanger sorting consisted of several hangers and a rack with three bars to sort small, medium, and large hangers.

Photo model. During the training and intervention phases, a photograph of the completed task was taped to each task bin. This enabled the students to self-check their final completed product for accuracy before they recruited teacher attention to obtain feedback.

Definition and Measurement of Dependent Variables

Total steps completed correctly. The primary dependent variable was the total number task analysis steps completed correctly (out of 10) for each task. Table 1 shows the task analysis steps for each pre-vocational task. The first six steps on each task analysis were specific to completing the task, and the last four steps were specific to recruiting teacher attention. There was no time limit for task completion, but it usually took about 10 to 15 minutes for each task. An observer was present for all data collection sessions and used a 10-item task analysis recording sheet to record completion of each step. If the student completed a step correctly, the observer recorded a check mark next to that step. If the student skipped a step or did not complete a step correctly, the observer recorded an X next to that step on the task analysis recording sheet.

Recruiting steps completed correctly. The number of steps completed correctly (out of 4) for
<table>
<thead>
<tr>
<th>Task Analysis for Each Task for Kyle and Rob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kyle</td>
</tr>
<tr>
<td>Bundling</td>
</tr>
<tr>
<td>locate bin/items</td>
</tr>
<tr>
<td>(bundling tubes in paper bag)</td>
</tr>
<tr>
<td>count groups of 3 tubes</td>
</tr>
<tr>
<td>rubber band bundles together</td>
</tr>
<tr>
<td>self-check for accuracy (using photo)</td>
</tr>
<tr>
<td>fix mistakes or determine correct</td>
</tr>
<tr>
<td>raise hand (within 10 sec of task completion)</td>
</tr>
<tr>
<td>quietly wait for staff member (no talking or noise)</td>
</tr>
<tr>
<td>indicate to staff that work was completed</td>
</tr>
<tr>
<td>receive feedback and put the bin away, remove task picture</td>
</tr>
<tr>
<td>Rob</td>
</tr>
<tr>
<td>Bundling</td>
</tr>
<tr>
<td>locate bin/items (scale and blocks)</td>
</tr>
<tr>
<td>locate bin/items (measuring cups and rice)</td>
</tr>
<tr>
<td>locate bin/items (mailbox and envelopes)</td>
</tr>
<tr>
<td>sort envelopes by zip code</td>
</tr>
<tr>
<td>hang hangers on appropriate sections of the dowel rod</td>
</tr>
<tr>
<td>place blocks in appropriate baggies</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Self-Monitoring and Recruiting Teacher Attention / 317</td>
</tr>
</tbody>
</table>
recruiting teacher attention was analyzed as a separate dependent variable. These four steps were (a) raise your hand, (b) wait quietly for the teacher, (c) tell/show the teacher your work is complete, and (d) listen to feedback and put the bin away (see Table 1, last 4 steps).

Interobserver Agreement and Treatment Integrity

Prior to beginning data collection, the experimenter reviewed each of the task analyses with the second observer and provided a definition and examples of correct responses and incorrect responses for each step. Interobserver agreement (IOA) data were collected across baseline, training, intervention, and maintenance conditions. The second observer was present for 40% of Kyle’s sessions and 27% of Rob’s sessions. Along with the primary observer, the second observer independently and simultaneously recorded the number of tasks and recruiting steps completed correctly for each student for all three tasks. Agreements and disagreements were examined for each step on an item-by-item basis. IOA was calculated by dividing the number of agreements by the number of agreements plus disagreements and multiplying by 100. IOA for both participants across all tasks was 100%.

Treatment integrity data were collected during 100% of the pre-intervention training sessions to determine the extent to which the classroom teacher implemented training correctly. The primary observer used a 6-item procedural checklist and recorded whether or not the teacher implemented each step in the training sequence. The steps were as follows, the teacher: a) directs student to visual checklist, b) points to each step in the visual checklist, c) re-directs off-task behavior or incorrect steps by pointing to correct steps on visual checklist, d) monitors for correctness, e) directs student to look at the photo on bin to check work for correctness (upon task completion), and f) gives feedback to the student. The teacher implemented the pre-intervention training with 100% accuracy across all five training sessions.

Treatment integrity data were also collected during 90% of the intervention sessions, booster sessions (for Rob only), and maintenance sessions (for Kyle only) to determine the extent to which the classroom teacher implemented the intervention procedures correctly. The primary observer used a 5-item procedural checklist and recorded whether or not the teacher implemented each procedural step. The procedures were as follows, the teacher a) provides students with materials and picture task strips, b) prompts students to start their work, c) checks students’ work, d) provides feedback and praise, and e) prompts students to fix errors if necessary and provides praise. Treatment integrity was 100% for all observed intervention sessions.

Experimental Design

A multiple probe across behaviors design was used to examine the effects of the self-monitoring and recruitment training package on the number of task and recruiting steps completed correctly.

Procedure

Pre-baseline training of pre-vocational tasks. The students had no prior training with the target pre-vocational tasks selected for this study, but they had experience with using job boards containing Boardmaker® pictures for other pre-vocational tasks (see Figure 1). In order for the students to become familiar with their assigned tasks, the teacher provided pre-baseline training to each student individually. The teacher introduced the job board to the student, showed him the three Boardmaker® pictures that matched each task, modeled how to complete each task, and guided students through performing each step of the task using verbal prompting and feedback. Once each student was able to complete at least five steps of each task independently, baseline data collection began. Kyle needed one session of pre-baseline training to reach this criterion and Rob needed two sessions.

Baseline. During the baseline phase, the teacher placed the job boards on each student’s desk, and instructed them to read their boards and complete their work. No other visual or verbal prompts were provided during task completion. The students were expected to complete the 10 steps for each of the tasks independently with no set time limit. Student responses were recorded on the task analysis.
recording form. If errors were made during baseline, error correction was not provided. The teacher redirected the students with a verbal prompt if they were off task for more than two minutes.

Pre-intervention training. The self-monitoring picture prompt checklist used in this study was new to Kyle and Rob; therefore, pre-intervention training for using the checklist was necessary (see Figure 2). Pre-intervention training consisted of the teacher introducing the self-monitoring picture prompt checklist to the students. There were six picture prompt steps on a strip of paper: (a) do your work, (b) look at the picture, (c) check your work and fix, (d) raise your hand, (e) quietly wait for the teacher, and (f) put bin away. The teacher read the checklist aloud to the students, modeled each step, verbally prompted the students through performing each step, and provided feedback. The students were trained to use the checklist with only one of the three tasks. For the third step, “check your work and fix,” the student was taught to compare his completed work to the photo model that was attached to the task bin. After putting the bin away, the student removed the task picture from the job board to indicate the task was complete.

When the picture prompt checklist was introduced for the other two tasks later in the study, no additional pre-intervention training was implemented. The students were expected to generalize the use of the checklist to the other two tasks. The criterion to begin intervention for both students was at least five steps completed correctly on the task analysis. Rob was trained to use the self-monitoring picture prompt checklist with the bundling task and he needed four days of pre-intervention training. Kyle was trained to use the self-monitoring picture prompt checklist with the weight task and he needed one day of training.

Intervention. During the intervention phase, the teacher placed the job boards and self-monitoring picture prompts on each student’s desk and told them to begin their work. The students used the self-monitoring picture prompt checklist to independently complete the task they practiced with the self-monitoring picture prompt during pre-intervention training. When the second task was introduced, the teacher placed a photo model of the completed task on the second task bin, and prompted the student to use the self-monitoring checklist for both tasks. When the third task was introduced, the teacher placed a photo model of the completed task on the third task bin and prompted the student to use the self-monitoring checklist for all three tasks.

When baseline probes were taken on the same day as intervention probes, the students did the first task (or first two tasks) on the job board using the self-monitoring checklist. But for example, during the intervention phase for Tier 1 and 2 (but with Tier 3 still in baseline), the teacher placed the checklist on the student’s desk during the first task, left it on his desk for the second task, but removed it before the student started the third task (i.e., the baseline probe).

Booster. The booster sessions were implemented for Rob because his intervention performance decreased substantially on Session 13, which was the session that followed winter break. In order to prevent disruptive behaviors that often resulted when Rob experienced frustration, the teacher implemented the same procedures used during pre-intervention training in a series of four booster sessions. The booster sessions enabled Rob to successfully complete the sequence of steps that he may have forgotten during the break.

Maintenance. The criterion for beginning the maintenance phase was completing nine or ten steps correctly across six consecutive intervention sessions. Kyle met the criteria to begin the maintenance, but Rob did not. During the maintenance phase, the job board was placed on the Kyle’s desk, but the self-monitoring picture prompt checklist and the photo models of the completed tasks on the bins were removed. Maintenance probes were collected for Kyle up to two months for the first task and one month for the second and third tasks.

Results

Total Steps Completed Correctly

Kyle. Figure 3 shows the number of steps completed correctly across pre-vocational...
Figure 3. Total number of steps completed correctly across conditions for Kyle.
tasks and conditions for Kyle. In baseline, Kyle’s responses were relatively stable, ranging from 3 to 6 (mean: 4.8) steps completed correctly across all three tasks. Immediately after pre-intervention training, the number of correct responses increased substantially, ranging from 7 to 10 (mean: 9.5) steps completed correctly in the intervention phase. During maintenance, Kyle continued to perform at high levels of accuracy. His performance during maintenance for all three tasks ranged between 9 and 10 (mean: 9.7) steps completed correctly for up to two months after the intervention phase ended.

Rob. Figure 4 shows the number of correct steps for task completion across pre-vocational tasks and conditions for Rob. His baseline responding showed variability ranging from 1 to 6 (mean: 3.5) steps completed correctly across tasks. During pre-intervention training, Rob performed at or below baseline until the third training session in which there was a substantial increase from 1 step completed correctly to 6. In Rob’s first intervention phase, his performance deteriorated to below baseline level performance (probably due to winter break), so a booster phase was implemented. After the booster phase, Rob attained a range of 8 to 10 steps completed correctly for the first two tasks, and 6 to 9 steps completed correctly for the third task. A maintenance phase was not implemented for Rob because he did not meet the criteria of achieving at least 9 steps completed correctly across six consecutive sessions.

Recruiting Steps Completed Correctly

Kyle. Figure 5 shows the number of recruiting steps completed correctly (out of 4) for Kyle. His baseline responding across all three tasks ranged between 0 and 3 (mean: 1.4) recruiting steps completed correctly. During intervention, the number of Kyle’s recruiting steps completed correctly increased and remained high and stable across all three tasks (mean: 3.7). In maintenance, Kyle completed 4 out of 4 recruiting steps on all of the maintenance sessions except one.

Rob. Figure 6 shows the number of recruiting steps completed correctly for Rob. In baseline, Rob’s number of recruiting steps completed correctly were low, ranging between 0 and 1 (mean: 0.4) across all three tasks. During the first intervention phase, Rob’s recruiting responses were variable, showing an average of 2.2 recruiting steps completed correctly. In the second intervention phase (after the booster phase), Rob attained 3 to 4 recruiting steps completed correctly on all but two sessions for the first two tasks. For the third task, the number of correct recruiting steps was more variable. Rob’s correct responding in the second intervention phase showed a clear increase compared to his baseline performance and only one overlapping data point. Maintenance data were not collected for Rob.

Discussion

This study demonstrates that a self-monitoring and recruiting training package was functionally related to consistently high levels of task steps completed correctly by two students with moderate to intensive disability. Specifically, Kyle and Rob learned to use a picture prompt checklist to self-monitor their completion of pre-vocational tasks and then appropriately recruit teacher feedback. After direct instruction on using the self-monitoring checklist for one pre-vocational task, both students were able to generalize the use of the self-monitoring checklist to the other two tasks. Additionally, one of the students demonstrated maintenance of task completion and recruiting for up to two months after the self-monitoring checklist was no longer provided and the photo model was removed. When examining the recruiting steps separately, Kyle performed all four steps correctly on most of the intervention sessions and all but one of 18 maintenance probes. For Ryan, the number of recruiting steps completed correctly was more variable throughout the intervention, but there was a clear difference in performance after training and only one intervention data point overlapping with baseline.

These results support the findings of Agran et al. (2005), Wacker and Berg (1983), and Wacker et al. (1985) demonstrating that adolescents with moderate to severe intellectual disability can successfully use self-monitoring to improve their performance of vocational and daily living skills. This study also supports previous research examining the combined
Figure 4. Total number of steps completed correctly across conditions for Rob.
Figure 5. Number of recruiting steps completed correctly across conditions for Kyle.
Figure 6. Number of recruiting steps completed correctly across conditions for Rob.
effects of self-monitoring and recruiting teacher attention for this population (Brooks, Todd, Tofflemoyer, & Horner, 2003; Mank & Horner, 1987), and extends the findings to middle school students with moderate to severe intellectual disability performing pre-vocational tasks.

Aspects of the intervention that probably contributed to the positive outcomes were the training procedures, the self-assessment component of the self-monitoring sequence, and the student’s contact with self-recruited reinforcement. The training procedures consisted of the teacher modeling the correspondence of each picture to specific actions, using verbal prompting to guide the student through each step, and providing continuous feedback and reinforcement. An indication of the effectiveness of the training is that both students generalized the use of the self-monitoring picture checklist to the two other tasks, even though Rob needed four sessions of training and Kyle only needed one.

Teaching the students to self-assess probably strengthened the effectiveness of the intervention. The first three steps on the self-monitoring checklist were: do your work, look at the picture, and check your work and fix. Incorporating self-assessment and an opportunity to self-correct into the self-monitoring checklist enabled the students to work more independently and complete the task correctly. In this study, the students engaged in self-assessment by comparing their completed work to a photograph. Using photographs or video models for self-assessment has been demonstrated to be an effective way to help students with limited cognitive abilities self-monitor their work (e.g., Cannella-Malone, Sigafoos, & O’Reilly, 2006; Marcus, Wilder, 2009).

Self-assessment is also an important component of training students to recruit positive teacher attention. Almost all of the recruiting research includes teaching students a way to self-assess his or her work before signaling the teacher for attention (e.g., Alber et al., 2004; Craft et al., 1998). Teaching students to self-assess and self-correct will increase their accuracy, and accurate responses are more likely than incorrect responses to contact teacher praise. Teacher praise may function to increase the future likelihood of accurate responding. Additionally, teaching students to appropriately recruit teacher attention will enable them to gain access to reinforcement for a wide range of skills and appropriate behaviors.

Limitations and Future Research

Although this study supports previous self-monitoring and recruiting research, the extent to which the findings can be generalized to other populations or environments is limited. This study was conducted with two middle school students with moderate to severe intellectual disability learning pre-vocational tasks in a self-contained special education classroom in a Midwestern school district. To increase external validity, future research should attempt to examine this kind of self-monitoring and recruiting package for individuals of different ages and ability levels, learning different kinds of tasks (e.g., academic, daily living, vocational), in different kinds of school and community settings. For example, the effects of self-monitoring and recruiting can be examined for elementary students with intellectual disability attending inclusive classrooms or for high school students with disabilities transitioning to supported-employment settings. Additionally, different kinds of self-monitoring and recruiting procedures can be examined. For example, students with limited verbal or physical capacity may be taught other ways to recruit the teacher’s attention, such as using different kinds of assistive technology devices.

The intervention package in this study combined two evidence-based practices—teaching students to self-monitor and teaching students to recruit attention. Since these two practices were combined into one intervention, it is not possible for the experimenters to determine which part of the intervention had the greatest effect on each student’s behavior. Future research may attempt to examine the package components separately in order to determine the variables that contribute most to acquisition, maintenance, and generalization.

Generalization was evident in this study when both students successfully used the self-monitoring checklist for two pre-vocational tasks after direct instruction of the checklist with the first task only. However, generaliza-
tion of the checklist to other tasks was demonstrated in the same setting at the same time of day with the same teacher and staff present. Additional kinds of generalization probes may provide information regarding the extent to which the students were able to self-monitor and recruit in other settings or situations. For example, future research could conduct generalization probes with different tasks, at different times of the day, in different classrooms, and with different staff members or students present. Future research may also attempt to examine the extent to which recruiting teacher attention generalizes to other kinds of tasks throughout the school day.

The results pertaining to maintenance outcomes are promising based on Kyle’s data, but we were unable to collect maintenance data for Rob due to running out of time at the end of the school year. Rob’s data were more variable and, after a week off for winter break, he needed a series of booster sessions to be successful in the intervention phase. The differing rates at which each student made progress can be attributed to individual developmental differences that are to be expected in all classrooms. Future research should attempt to increase the length of time for data collection so experimenters can examine how all of the participants respond under maintenance conditions. Additionally, future research may attempt to examine the variables contributing to the likelihood of successful maintenance outcomes.

Implications for Practice

In this study, the results demonstrated that the training package for teaching self-monitoring and recruiting attention was practical for students with moderate to intensive disabilities. Variations of self-monitoring checklists with or without picture prompts can be used for a range of academic, functional, social, and vocational skills. Teachers can make the self-monitoring checklist as simple or as complicated as needed considering the students’ individual levels of functioning.

Both of the participants in this study were able to attain proficient levels of performance with relatively little cost in terms of instructional materials and teacher time. The prevocational task materials were inexpensive, easily accessible for the classroom teacher, and easy and quick to create. Only a few sessions of training were required to enable both students to increase their independence of work completion of three different prevocational tasks. This intervention may provide teachers with an efficient way to teach students, even those with more significant disabilities, to function more independently. Additionally, teaching students to recruit teacher attention and ask for feedback enables them to become proactive learners.

References

Received: 23 August 2012
Initial Acceptance: 23 October 2012
Final Acceptance: 15 January 2013