Factors Impacting Receipt of a Functional Curriculum:
A Secondary Analysis of the NLTS2

Emily C. Bouck
Purdue University

Abstract: Curriculum can matter, but little research systematically examines the receipt of a particular curriculum for secondary students with disabilities and what influences the receipt of such a curriculum. This secondary analysis of the NLTS2 sought to understand who receives a functional curriculum as their secondary special education curriculum and the factors associated with receipt of such as a curriculum (e.g., school geographical area, family income, mental skills score). The main results indicated receipt of a functional curriculum for all students with disabilities was highly dependent on disability status. When analyzing factors impacting receipt of a functional curriculum for just students with moderate/severe intellectual disability—the population with the largest frequency receiving a functional curriculum—no factors outside of gender were significant. Additional research is needed to paint a clearer picture of what influences receipt of a functional curriculum for students with disabilities.

Little agreement exists among researchers or practitioners as to what constitutes curriculum; definitions of curriculum run from the broad (i.e., experiences) to the narrow (i.e., written documents) (Nolet & McLaughlin, 2000). Curriculum can refer not only to educational programs or classroom materials (i.e., textbooks), but also students’ in-school experiences (Nolet & McLaughlin, 2000). Others stipulated curriculum “embodies the goals and expected outcomes of defining what students should know and how instructional resources should be invested” (McDonnell, Wilcox, & Hardman, 1991). Special education researchers also defined curriculum as the total school experience (Doll, 1989), what is learned in a “learning situation” (Kavale, 1990, p. 36), the what and creation of special programs (Pugach & Warger, 1993), and to some the Individual Education Plan (IEP) itself (Sands, Adams, & Stout, 1995). While disagreement exists, it is understood that curriculum is complex and reflects plans and activities to benefit students and help them achieve specific goals (Nolet & McLaughlin, 2000).

Easiest to understand is that “curriculum represents the ‘what’ of schooling; it is the content teachers teach and students learn” (Nolet & McLaughlin, 2000, p. 20). However, the “what” of education is an endless debate. The sides of the curricula issue can be framed by answering questions, such as “what is the central purpose of the school system?” and “what are the learning outcomes that we are striving toward?” (Monson & Monson, 1993 p. 20). For example, Spady (1994) suggested the outcomes of education should have significance, in that they should have an impact on the long-term future of students.

Within the field of special education, tensions exist regarding the purpose of education, historically framed by two extremes within a possible continuum: “education should train the mind” and “education should be relevant” (Retish, Hitchings, Horvath, & Schmalle, 1991). In other words, these two perspectives can be conceptualized as preparation for adult life (i.e., access to functional or life skills) versus traditional academics (i.e., general education or standards-based curriculum) (Guy, Sitlington, Larsen, & Frank, 2009). An academic curriculum typically involves teaching academic content, as in the general

Correspondence concerning this article should be addressed to Emily C. Bouck, 5146 BRNG Hall, 100 N. University St., West Lafayette, IN 47907, 765-494-7238, bouck@purdue.edu
education content instruction (e.g., mathematics, English/language arts, science, social studies) (Bouck, 2012). Conceptually, an academic curriculum can be the general education curriculum with no accommodations, the general education curriculum with accommodations, the general education curriculum with modifications, or instruction aligned to general academic content standards (Browder & Cooper-Duffy, 2003; Courtade, Spooner, & Browder, 2007; Giangreco, Cloninger, & Iverson, 1998; Wehmeyer, Lattin, & Agran, 2001).

As another curricular approach (Bigge, 1988; Pugach & Warger, 2001), a functional or life skills curriculum encompasses teaching age-appropriate skills needed for functioning in daily life or society (Browder et al., 2004; Brown et al., 1979; Brown, Nietupski, & Hamre-Nietupski, 1976). A functional curriculum generally includes the following components: functional academics, vocational education, community access, daily living skills, financial skills, independent living skills, transportation skills, social/relationship skills, and self-determination (Patton, Cronin, & Jairrels, 1997). A functional curriculum coincides with the belief perpetuated by Ford et al. (1989) that "a minimal outcome of a student's academic program should be the achievement of useful skills—skills that will allow the student to enjoy a greater degree of participation in an enjoyable life-style" (p. 90).

The tension regarding what should be the focus of education (i.e., functional vs. academic curriculum) for students with disabilities at the secondary level can be seen across multiple disability categories (Ayres, Lowrey, Douglas, & Sievers, 2011; Cronin, 1996; Retish et al., 1991). However, most discussion regarding a functional curriculum and the tension regarding curriculum choice involves students with more moderate and severe disabilities, such as mild, moderate, and severe intellectual disability (Ayres et al., 2011; Bouck, 2004). Although debate regarding functional vs. academic curriculum experienced a recent surge in attention—particularly considering the population of students with intellectual disability, the tension is not new (Ayres et al., 2011; Ayres, Lowrey, Douglas, & Sievers, 2012; Courtade, Spooner, Browder, & Jimenez, 2012). For example, O’Neil (1998) advocated for a functional curriculum at the secondary level for students with disabilities in specific contrast to an academic curriculum. Similarly, Clark (1994) and Patton, Polloway, and Smith (2000) argued a functional curriculum is an appropriate option for secondary students with disabilities. Although most of the discussion regarding appropriate curriculum presents the two positions as a dichotomy (functional vs. academic), these two curricular approaches can exist on a continuum and in tandem (Ayres et al., 2011, 2012; Benz & Kochhar, 1996; Bouck, 2012; Collins, Hager, & Galloway, 2011; Courtade et al., 2012; Eisenman, 2000).

The philosophical debate regarding curriculum at the secondary level does not exist in a vacuum, as curriculum is implemented in practice. However, curriculum implementation or enactment is not limited to just philosophical or pedagogical beliefs, although those are important. Other factors contribute to the curriculum secondary students with disabilities receive in school. For example, Bouck (2008)—based on Milner (2003) and Morrison (1993)—discussed seven factors impacting a functional curriculum enactment in secondary self-contained classrooms: legislation/policy, curriculum materials, school conditions, community (including geographical location), teachers (e.g., beliefs and training), students, and paraprofessionals. While some research exists regarding factors influencing curriculum (Bouck, 2008), little systematically examines the effect of particular factors on students’ receipt of a functional curriculum. This study sought to explore the factors related to secondary students with disabilities receiving a functional curriculum. Specifically, this study sought to answer the following questions: (a) at what frequency do high school students with disabilities report receiving a functional curriculum as their special education curriculum?, and (b) when considering individual demographics and school demographics, what factors are associated with receipt of a functional curriculum by students with disabilities?

Method

This study used the National Longitudinal Transition Study-2 (NLTS2) to understand who—as in disability categories—received a
functional curriculum as their secondary special education curriculum and the factors associated with receipt of such as a curriculum. The NLTS2 was a federally funded project of the U.S. Department of Education. It was a national, longitudinal study focused on the in-school, transition, and postschool experiences of secondary students with disabilities (SRI International, 2000b). The article highlights information pertinent to a secondary analysis of the NLTS2, but the author also invites readers to refer to previously published articles to gain specifics about the NLTS2 (i.e., Wagner, Kutash, Duchnowski, & Epstein, 2005) as well as to the NLTS2 Web site (http://www.nlts2.org).

Participants and Setting

Participants in this study are a subsection of the NLTS2 database, in which the population involved students receiving special education services from randomly selected local education agencies and state-support schools. Geographical region, student enrollment, and wealth of LEA or state-supported school are accounted for within the school selection of the larger NLTS2 (SRI International, 2000a, Wagner et al., 2005). The NLTS2 restricted its participants to students in at least seventh-grade and between the ages of 13–16. According to SRI International (2000a) and SRI researchers (Wagner et al., 2005) the sampling was also completed to enable a 3.6% standard error in the highest frequency categories: learning disability, emotional/behavior disorder, intellectual disability, speech and language impairment, other health impairment, and hearing impairment. To be included in this secondary analysis, participants from the NLTS2 database were in high school during the 2000–2001 academic year—meaning in grades 9–13; had an IEP during the year of data collection; and had a primary disability indicated by their school as recorded on their IEP (i.e., autism, ADHD, deaf, hard of hearing, deaf-blind, developmental delay, behavior disorder, learning disability, mild intellectual disability, moderate/severe intellectual disability, multiple disabilities, orthopedic impairment/physical disability, otherwise health impaired, speech impairment, traumatic brain impairment, and visual impairment).

Across all 15 disability categories, 874,432 students were included in this secondary analysis. Of those students, the majority indicated their primary disability was learning disability (63.6%, SE = 2.4), followed by mild intellectual disability (10.4%, SE = 1.1), emotional/behavior disorder (9.4%, SE = 1.4), moderate/severe intellectual disability (4.9%, SE = 0.8), other health impairment (2.4%, SE = 0.4), ADHD (2.2%, SE = 0.6), multiple disability (1.4%, SE = 0.3), speech impairment (1.2%, SE = 0.2), developmental delay (1.2%, SE = 0.3), autism (1.0%, SE = 0.2), orthopedic impairment/physical disability (0.9%, SE = 0.2), deaf or hard-of-hearing (0.7%, SE = 0.6), traumatic brain injury (0.3%, SE = 0.1), visual impairment (0.3%, SE = 0.1), and deaf-blind (0.02%, SE = 0.0). Across the disability categories, the majority of students were Caucasian (61.6%, SE = 4.1), followed by African-American (21.6%, SE = 2.6), Hispanic (13.9%, SE = 2.3), Asian (1.3%, SE = 0.4), multiracial or other (1.1%, SE = 0.7), and Native American (0.6%, SE = 0.2). More males were included in the study than females (67.6% vs. 32.4%). Students’ mental skills ranged from 4–16, which represent the minimum and maximum values given four skills were assessed on a four-point rating scale ranging from one (not at all well) to four (very well). In the NLTS2, mental skills were operationally defined as the sum of the student’s ability to tell time on a clock with hands, read and understand common signs, count change and look up telephone numbers in a phonebook and use the telephone; and the assessment was made by a student’s parent or guardian. The most frequent mental skill was 16 (31.7%, SE = 2.5), followed by 14 (15.1%, SE = 2.4), and 15 (11.9%, SE = 1.6). The least frequently reported mental skills score were 5 (0.6%, SE = 0.2), 6 (1.1%, SE = 0.5), and 4 (1.3%, SE = 0.3).

Of the included students in the secondary analysis, the average age was 16.1. Seventeen was the most frequently indicated age (31.4%, SE = 2.3), followed by 16 (27.6%, SE = 2.4), 15 (23.1%, SE = 2.1), 14 (9.7%, SE = 1.3), and then 18 (8.3%, SE = 1.5). The order of grade level by frequency was eleventh grade (29.6%, SE = 2.3), ninth grade (28.3%, SE = 2.0),
tenth grade (27.4%, \(SE = 2.0\)), twelfth grade (12.0%, \(SE = 1.8\)), and then ungraded or thirteenth grade (2.8%, \(SE = 0.8\)). The most frequently indicated household income was less than or equal to $25,000 (37.9%, \(SE = 2.4\)), followed by greater than $50,000 (32.4%, \(SE = 2.7\)), and $25,001-$50,000 (29.7%, \(SE = 2.2\)).

The 874,433 students were educated primarily in suburban schools (54.0%, \(SE = 4.8\)), followed by urban schools (32.5%, \(SE = 5.2\)) and rural (13.5%, \(SE = 2.3\)). The average enrollment across schools was 1331 with a range from 8 to 5480. The average percentage of students with disabilities across schools was 16.9%.

Data Collection/Procedure

NLTS2 data files provided the data for this secondary analysis, which the author accessed per her restricted license. Only one wave of data was used—wave 1 collected during the 2000/2001 and 2001/2002 academic years in this secondary analysis. The NLTS2 involved nine years of data collection broken into five waves. Wave 1 was selected because all three surveys were conducted at Wave 1, so data were collected at the same point in time and attrition in later waves was avoided. The NLTS2 also involved different data sources (e.g., parent/youth surveys, transcripts, school personnel surveys), but this secondary analysis consisted of data from three sources: parent survey, school program survey, and school characteristics survey.

To conduct the secondary analysis, the researcher needed to create one large database. To do so, the researcher first sought the appropriate variables to address the research questions in each of the targeted data sources from the first wave of data collection. For each data source (i.e., survey), non-relevant variables were deleted. Next, the researcher reduced the school program database—selected because it is the one that provides students' disability categorization according to the IEP—to only the students participating in the secondary analysis per the criteria. The criteria was that the student was in high school during wave 1, had an IEP during the year of data collection, and had a primary disability indicated by their school as recorded on their IEP. Finally, the three databases were merged in SPSS; the parent survey and school characteristics were merged into the school program database to include only those students who were retained from the school program database.

A single database was then created with the following variables: (a) curriculum in special education class, (b) primary disability, (c) current grade level, (d) ethnicity (six categories), (e) gender, (f) income (three categories), (g) school location (three categories), (h) current age, (i) mental skills scale, (j) number of students enrolled, and (k) number of students with disabilities. While many original NLTS2 variables were used, the author also recoded or created some variables. For example, the disability variable was recoded to combine deaf and hard of hearing into one category, in alignment with IDEA disability categories and for consistency with the NLTS2’s handling of visual impairment and blind. The variable total disability was created by summing the number of students with disabilities reported on the school characteristics survey. Next, to get a percent of students with disabilities, the total was divided by the school enrollment variable. Both percent of students with disabilities as well as school enrollment variable were divided into quartiles for the purposes of analysis.

Data Analysis

To determine the frequency at which high school students with disabilities report receiving a functional curriculum, descriptive analyses were conducted. Frequency distributions were created for receipt of a curriculum disaggregated for each disability category as well as aggregated. To answer the second research question—when considering individual demographics and school demographics, what factors are associated with receipt of a functional curriculum—a logistic regression analysis was conducted for the binary dependent variable receipt of functional curriculum. The logistic regression analysis focused on predicting the probability students received a functional curriculum given individual (i.e., disability, ethnicity, gender, grade, family income, mental skills) and school (i.e., geographical location,
Prior to conducting the logistic regression, a correlation was conducted to determine if the independent variables were correlated with the dependent variable; those with a magnitude of 0.1 or higher were included. Hence, the following variables were included in the logistic regression: disability (.154), grade (.150), and mental skills (.501).

Given that the results strongly indicated receipt of a functional curriculum by one disability category—students with moderate/severe intellectual disability, and concern about the large proportion of students with learning disabilities in the aggregated analysis—who largely did not receive a functional curriculum— influencing the results, a second logistic regression was conducted. The second logistic regression involved just the population of students with moderate/severe intellectual disability to explore the impact of the same factors on their receipt of a functional curriculum. The following variables had a magnitude of 0.1 or higher and were included in logistic regression focused solely on students with moderate/severe intellectual disability: grade, gender, age, family income, mental skills, and quartile of percent of students receiving special education in the school.

The researcher used IBM Statistics 19.0—specifically the complex samples package—to complete all data analysis. With SPSS complex samples, the researcher can apply the weights from the NLTS2 data, which results in data representing population characteristics as opposed to just the sample. All data reported are weighted, consistent with the provision of the restricted use database license.

Results

Across all 15 disability categories, 8.1% (SE = 1.0) of the 874,432 students included in this secondary analysis received a functional curriculum; 91.9% received a non-functional curriculum (i.e., academic, basic academic, or study skills). Within the 15 disability categories examined, students with moderate/severe intellectual disability most frequently received a functional curriculum (66.5%, SE = 6.8; see Table 1 for frequencies of curriculum receipt by disability category). Less than half of stu-

TABLE 1

Receipt of Functional Curriculum by Disability Categories

<table>
<thead>
<tr>
<th>Disability</th>
<th>Functional Curriculum</th>
<th>Non-functional Curriculum</th>
<th>Odds Ratio for FC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate/Severe Intellectual Disability</td>
<td>66.5% (6.8)</td>
<td>33.5% (6.8)</td>
<td></td>
</tr>
<tr>
<td>Multiple Disabilities</td>
<td>41.4% (9.5)</td>
<td>58.6% (9.5)</td>
<td>.551</td>
</tr>
<tr>
<td>Autism</td>
<td>38.3% (6.6)</td>
<td>61.7% (6.6)</td>
<td>.487</td>
</tr>
<tr>
<td>Traumatic Brain Injury</td>
<td>33.9% (7.6)</td>
<td>66.1% (7.6)</td>
<td>.465</td>
</tr>
<tr>
<td>Orthopedic Impairment/Physical Disability</td>
<td>27.5% (14.2)</td>
<td>72.5% (14.2)</td>
<td>.457</td>
</tr>
<tr>
<td>Visual Impairment, including Blind</td>
<td>24.8% (9.9)</td>
<td>75.2% (9.9)</td>
<td>.372</td>
</tr>
<tr>
<td>Developmental Delay</td>
<td>21.3% (11.4)</td>
<td>78.7% (11.4)</td>
<td>.256</td>
</tr>
<tr>
<td>Mild Intellectual Disability</td>
<td>14.5% (3.3)</td>
<td>85.5% (3.3)</td>
<td>.217</td>
</tr>
<tr>
<td>Emotional/Behavior Disorders</td>
<td>9.1% (2.2)</td>
<td>90.9% (2.2)</td>
<td>.165</td>
</tr>
<tr>
<td>Otherwise Health Impaired</td>
<td>6.2% (2.5)</td>
<td>93.8% (2.5)</td>
<td>.096</td>
</tr>
<tr>
<td>Learning Disability</td>
<td>1.0% (.7)</td>
<td>99.0% (.7)</td>
<td>.01</td>
</tr>
<tr>
<td>ADHD</td>
<td>0 (0)</td>
<td>100% (0)</td>
<td>4.285e-12</td>
</tr>
<tr>
<td>Speech and Language Impairment</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Hearing Impairment, including Deaf</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Deaf-Blind</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

Note: Data with low unweighted count are not reported (i.e., represented by dashes in the table). The number in the parenthesis represents the standard error. Odds ratio represents the odds of receiving a functional curriculum for each disability as compared to students with moderate/severe intellectual disability; all less likely as indicated by the odds ratio of less than 1 for all reported disability categories.
dents in all the other disability categories reported receiving a functional curriculum. The next most frequently indicated receipt of a functional curriculum involved students with multiple disabilities (41.4%, \(SE = 9.5 \)), followed by autism (38.3%, \(SE = 6.6 \)), traumatic brain injury (33.9%, \(SE = 7.6 \)), and orthopedic/physical impairment (27.5%, \(SE = 14.2 \)). Disability categories typically characterized as high incidence or mild disabilities had the lowest frequency of students of reporting receipt of a functional curriculum: zero students with ADHD, 1.0% (\(SE = 0.7 \)) of students with learning disabilities, 9.1% (\(SE = 2.2 \)) of students with emotional/behavioral disorders, and 14.5% (\(SE = 3.3 \)) for students with mild intellectual disability.

The logistic regression for receipt of a functional curriculum indicated two of the independent variables included in the model were statistically significant: disability (\(F(14, 303) = 456.415, p \leq .000 \)) and mental skills (\(F(12, 305) = 3.814, p \leq .000 \)); grade was not a statistically significant predictor (\(p = .064 \)). The likelihood of receiving a functional curriculum was lower for all disability categories as compared to students with moderate/severe intellectual disability, consistent with the descriptive results. In other words, students with moderate/severe intellectual disability were more likely to receive a functional curriculum than any other disability category (see Table 1 for odds ratio of receipt of a functional curriculum as compared to students with moderate/severe intellectual disability). Students who had lower mental skills were more likely to receive a functional curriculum as compared to students with higher mental skills. In other words, students with a mental skills assessment of 4 were 4.98 times more likely to receive a non-functional curriculum as compared to students with a mental skills assessment of 6, 6.37 for a score of 5, and 6.94 for a score of 7. This was consistent for the lower mental skills scores up through nine.

When examining the influence of factors for just students with moderate/severe intellectual disability, of which two-thirds reported receiving a functional curriculum as their special education curriculum, only gender was found to be statistically significant in the logistic regression (\(F(1,33) = 4.286, p = .046 \)). The odds ratio suggested males were almost 3 (2.982) times more likely to receive a functional curriculum as compared to females. The other factors examined in the logistic regression were not significant: grade, family income, mental skills, age, and quartile percent of special education students (\(p > .05 \)).

Discussion

This secondary analysis of the NLTS2 sought to understand which secondary students with disabilities receive a functional curriculum as their special education curriculum and the factors associated with receipt of such a curriculum. The main results indicated receipt of a functional curriculum for all students with disabilities was highly dependent on disability status. In contrast, contextual factors, such as school geographical location, school population, or school special education percent were not influential; nor were individual demographic factors of income, gender, or ethnicity. Further, when examining the factors impacting receipt of a functional curriculum for just the population with the largest frequency of reporting receiving this curriculum—students with moderate/severe intellectual disability—no factors outside gender were significant. Hence, the results both answer what gets taught and further calls this into question.

To begin, it is not surprising that students with moderate/severe intellectual disability were the most frequent category to report receiving a functional curriculum (66.5%); functional curriculum was originally developed and implemented with this population in mind (Bouck, 2012). Likewise, it is not surprising that students with high incidence disabilities (i.e., mild disabilities—learning disabilities) were the least likely to receive such a curriculum. Hence, in terms of factors impacting receipt of a functional curriculum, the influence of disability category and its related mental skills assessment was hypothesized. What was surprising was the lack of impact of other factors. In other words, if individual demographic factors—aside from disability and its correlated skills assessment—and school demographic factors were not predictive, then what does influence students’
receipt of a functional curriculum? Perhaps it is the influence of teachers—a missing link in this secondary analysis (Ball & Cohen, 1996; Brown & Edelson, 2001). To consider the impact of teachers on curriculum, one can consider the perspective of teachers influencing what gets taught based on their pedagogical views, the context in which they work (i.e., school’s pedagogical approach and what is supported), and available resources (Brown & Edelson, 2001; Forbes & Davies, 2010). Teachers’ pedagogy, beliefs, and content knowledge can influence the curriculum students receive (Milner, 2003; Remillard & Bryans, 2003; Weiss, Pasley, Smith, Banilower, & Heck, 2003). Likewise, a schools’ philosophy influences what gets taught (Milner, 2003; Waldrip & Giddings, 1996). In terms of resources, one has to consider the physical resources available within a classroom or program to implement a functional curriculum, including a textbook or a kitchen. Research in academic content areas suggests a large influence from textbooks on what gets taught, and concern exists about appropriate functional curriculum models (i.e., lack of appropriate written functional curriculum models for some populations; Bouck, 2009). Hence, if teachers do not have access to necessary resources, implementing a functional curriculum could be challenging (Bouck, 2008).

Another hypothesis—and best case scenario—may be that transition planning and postschool goals are driving curriculum. In other words, perhaps curriculum is being individualized to align with students’ primary postschool goals, whether those are postsecondary education, employment, or independent living. Depending on one’s goal, s/he might receive different curricular options, and this possibility is in need of additional research. However, challenges exist within the NLTS2 database with respect to analyzing the relationship between primary postschool goals and curriculum, as the NLTS2 allows for respondents to indicate multiple primary postschool goals (e.g., postsecondary education; competitive, supported, or sheltered employment; independent living), with sometimes contradictory results.

Implications for Practice

As a field we need to think about the curriculum we are giving students, why we are providing them with a particular curriculum, and what is influencing their experiences and/or our decisions. Hopefully, it is the individualized program for each student, including a focus on a student’s postschool goals that drives decision-making. And those decisions are not motivated by standardized assessments and their provisions, such as restrictions on the number of students who can take an alternate assessment and have it count towards a school’s AYP, but a student’s best interests (Bouck, 2009). Regardless, the field needs a renewed interest in critically examining what is being done in terms of curriculum, but more importantly why it is being done, to ensure decisions are being made in the best interest of students.

Limitations and Future Directions

First, given that this project is a secondary analysis of the NLTS2, it is subject to all the limitations of the original data collection (e.g., missing data within and across surveys, self-report or report from parents/guardians or teachers). However, additional limitations do exist specifically with regards to this project. For example, there were low raw numbers of students in certain disability categories, and the frequencies on those populations were unable to be reported. In addition, while some might view the lack of relationship between factors and receipt of a functional curriculum as a limitation, the authors view it as results and indicative that more comprehensive research needs to occur to tease out the relationship between educational factors and receipt of curriculum. Future research needs to systematically examine factors influencing receipt of a functional curriculum, especially with regards to isolating the impact of teachers. Researchers should also seek to connect in-school experiences to postschool experiences. In other words, more systematic research is needed to understand if what students receive in school (e.g., curriculum, transition activities) impacts their postschool outcomes.
References

