Teaching Adults with Moderate Intellectual Disability
ATM Use via the iPod
Renee Scott, Belva Collins, Victoria Knight, and Harold Kleinert
University of Kentucky

Abstract: Money management can increase independence and access to communities for individuals with disabilities. Although research on computer-based instruction for teaching banking skills to students with intellectual disability is established, the use of portable electronic devices (e.g., iPod) has not been evaluated. iPods may be an effective, portable, and socially acceptable method for teaching ATM use to individuals with disabilities. Three college-aged students with moderate intellectual disability (MSD) were taught to use a self-operated Podcast containing video modeling and auditory prompts presented on an iPod to withdraw money from an ATM. Evaluated using a multiple probe across participants design, a functional relation was demonstrated between the Podcast via the iPod and students’ percentage of correct steps completed on the task analysis. Further, students were able to generalize the skills to a novel setting. Future research, implications for practice, and limitations (e.g., cost and feasibility) are discussed.

Money management skills are an everyday part of our lives. For individuals with disabilities, learning to manage money can increase independence and access to their communities. In order to make purchases in various community settings, individuals with disabilities need to know how to access their money (e.g., cash checks, use an automated teller machine), as well as how to budget their money. Browder and Grasso (1999) identified the following skills involved in money management: (a) computation and record keeping, (b) banking, (c) budgeting, (d) comparing prices, purchasing, and (e) saving and investing.

Research on the effects of explicit and systematic instructional procedures on money management skills for students with disabilities is well established. For example, progressive time delay and general case programming can be used to teach students with disabilities to make purchases using a calculator (Fredrick-Dugan, Test, & Varn, 1991); the One-More-Than strategy paired with modeling can be used to teach individuals with intellectual disability simulated purchasing (Denny & Test, 1995). Further, purchasing skills can be taught using the system of least to most prompts in the classroom, school, and community (Cihak & Grim, 2008); and when the One-More-Than strategy paired with modeling is combined with computer-assisted instruction, it can be used to teach purchasing of grocery store items (Ayers, Langone, Boon, & Norman, 2006). In addition to purchasing skills, students with intellectual disability also can learn banking skills (e.g., Zencius, Davies, & Cuvo, 1990) as well as comparing prices and choosing lower price items (Kleinert, Guitian, & Sims, 1988), when error correction and prompting is used.

These examples show that individuals with intellectual disability can learn purchasing and banking skills using more “traditional” approaches to money management; however, individuals with intellectual disability need to learn current approaches to money management. Contemporary money management skills require the use of automated teller machines since virtually all banking needs, including making payments, withdrawing, depositing, and balancing transactions to and from checking and savings accounts now can be met by ATMs.
In one study on the effects of teaching ATM use to students with moderate disability, McDonnell and Ferguson (1989) compared a constant time delay procedure (CTD) to a decreasing prompt hierarchy procedure for teaching banking skills (i.e., writing checks for cash in banks, using an automated teller machine). Four students, ages 15 to 19, learned how to make cash withdrawals in the amounts of $10.00 and $20.00 from an automatic teller machine (ATM) or by writing and cashing a check in the bank. Results of the study indicated that both procedures led to the acquisition of skills, although the decreasing prompt hierarchy procedure was the more efficient procedure in teaching students with moderate intellectual disability how to withdraw cash from an ATM and how to write a check for cash.

An emerging body of literature suggests the use of video modeling and audio prompting as an effective method for teaching ATM use to students with mild to severe intellectual disability. For example, Cihak, Alberto, Taber-Dougherty, and Gama (2006) compared static picture prompting and video prompting simulation strategies to teach acquisition and maintenance of purchasing and banking skills to two groups of three middle school students with moderate intellectual disability and attention deficit hyperactivity disorder (ADHD). The researchers used a combination of group instruction and community-based instruction (CBI) to teach students how to use a debit card to withdraw $20.00 from an ATM and how to make purchases. Results indicated all students acquired and maintained the skills for using a debit card to withdraw $20.00 from the ATM and to purchase items. Both simulation strategies were equally effective in teaching both skills, although the two students with ADHD acquired the skills with more efficiency using the static picture prompting procedure.

In a similar study, Davies, Stock, and Wehmeyer (2003) examined the effects of computer simulation to teach ATM skills to 9 adults with disabilities. Results of the pilot study illustrated the potential for computer simulation to teach adults with disabilities how to use a local ATM. After the training on the computer program, the individuals with disabilities made fewer errors and required fewer prompts than before the training.

In addition to video modeling, audio prompting strategies also can be used to teach money management skills. For example, Post, Storey, and Karabin (2002) proposed the use of tape-recorded auditory prompts for each step of a task analysis to promote accuracy and to maintain attention to task. The authors identified the following student benefits in using auditory prompting procedures: (a) to complete new tasks, (b) to increase independence, (c) to generalize tasks, (d) to stay on task, (e) to increase self-management, (f) to maintain learned tasks, and (g) to increase rates of task completion (Post et al., 2002).

Results of these and other previous studies (e.g., Branham, Collins, Schuster, & Kleinert, 1999) suggest that different combinations of video modeling, auditory prompting, and CBI are effective in teaching students with MSD community, vocational, and money management skills. Most video prompting is completed in the classroom prior to implementation in the community (Banda, Dogoe, & Matuszny, 2011); however, the current study contributes to the literature by providing students with access to audio and video prompting during the community setting. In addition, the study will extend the type of technology used in instruction.

Technology continues to change the way we live, and more gadgets and devices are on the market than ever before (Mechling, 2011). Some gadgets, like the iPod, have become so commonplace that it seems that many people, from grandmothers to elementary students, owns one. iPods are portable media players that have audio output and a video display screen, and can be used with headphones. iPods are capable of playing music, audiobooks, and Pod casts. iPods are also capable of showing movies, videos, and pictures. In the current study, prompting was delivered via the iPod, a socially acceptable device that would not be noticed as stigmatizing when used in a community setting. Students used the iPod to watch a video while hearing verbal prompts in conjunction with completing skills in the community.

Given the research-base for video and audio prompting, this research study addressed two questions: (a) To what extent can a self-operated Pod cast containing video modeling and auditory prompts presented on an iPod in-
crease the acquisition of ATM skills to withdraw $20.00 by students with MSD in the community setting? and (b) To what extent does the results of using a self-operated Pod cast containing video modeling and auditory prompts presented on an iPod by students with MSD in the community setting generalize to a novel ATM?

Method

Participants

Students. Three college age students (one male, two females) with MSD, ranging in age from 18 to 20 years, participated in the study. All participants attended a public school community-based transition program located on a college campus and were served in a self-contained classroom for students with functional mental disability (i.e., moderate and severe disabilities). The teacher selected the students because they all had bank accounts, they all had community jobs from which they received a paycheck, and they all owned and used an iPod. The participants’ banking skills were emerging (e.g., learning to plan and stay within a budget).

The students had the following prerequisite skills: (a) visual and auditory acuity within normal functioning ranges; (b) imitation of model prompts; (c) fine motor skills needed to remove items from wallet, insert items into wallet, use keypad on computer and ATM machine; (d) ability to use an iPod (i.e., turn it on, locate Pod cast, play Pod cast); and (e) ability to stay on task during 1:1 instruction for at least 5 min. The researchers assessed these skills through observation prior to baseline sessions.

Emily (age 19 years, 10 months) had multiple disabilities. She had an IQ score of 64 on the Wechsler Intelligence Scale for Children—Fourth Edition (WISC-IV; Wechsler, 2003). Her community job experiences included a paper route for the university newspaper and clerical work for a local community organization. Emily’s Individualized Education Program (IEP) objectives were to maintain a weekly and monthly budget, improve reading comprehension, and write sentences using appropriate capitalization and punctuation.

Lucy (age 20 years, 9 months) had Down syndrome. Her IQ score was 40 on the WISC-IV. Her vocational experiences were a paper route for the university newspaper and clerical work for a local community charity. Lucy’s IEP objectives included staying within a budget when making purchases, answering questions, and making healthy food choices at restaurants.

Walter (age 18, 2 months) had Down syndrome. He received an IQ score of 54 on the WISC-IV. His job training experiences included a paper route for the university newspaper and table bussing at a local restaurant. Walter’s IEP objectives included staying within a daily and weekly budget, filling out forms (e.g., job applications, patient information forms), and following a written checklist.

Teachers. The classroom teacher, who was a special education graduate student with an undergraduate degree in special education for students with MSD, had 6 years of teaching experience, and was a teacher in this study, conducted all baseline sessions, training sessions, generalization sessions, and maintenance sessions. A resource teacher, who was a special education graduate student with an undergraduate degree in special education for students with MSD, collected independent variable and dependent variable reliability data. The resource teacher was an experienced data collector who needed no additional training.

Setting

Baseline, training, and maintenance sessions took place at an ATM machine located in the student center on the college campus in an urban area of the Southeast. During each session, a student stood in front of the ATM machine. The trainer stood beside the student to collect data. Generalization probe sessions occurred at a local bank ATM that was in the neighborhood of the college the students attended.

Materials and Equipment

The materials and equipment used to implement this study included a 30-gigabyte iPod with headphones and a video Pod cast of a peer using an ATM, narrated by alternating male and female voices. The teacher created
the video Pod cast from a series of still shots taken using a simulated ATM from a subjective viewpoint (i.e., from the students’ point of view) so the students were able to see the same thing on the iPod screen and the ATM screen. This permitted students to complete the task in the exact way they viewed it. Norman et al. (2009) suggested that this viewpoint might be especially advantageous for persons with cognitive disability. Male and female peers narrated each step as the student completed it (i.e., “First, I am going to take out my wallet.”). After each step, the video stayed on the still image for 5 s to 10 s before transitioning to the next image to allow the student time to complete the step. To prevent the ATM from timing out, the teacher allotted 10 s for baseline task-analyzed steps 1 through 4, 6, and 11 through 15 and allotted 5 s for all remaining steps. For the training, generalization, and maintenance task analysis, the teacher allotted 10 s for steps 1 through 7, 9, and 14 through 18 and allotted 5 s for all remaining steps. The teacher determined the duration for each step based on the complexity of the step. For example, during the generalization probes, the instructor made these interval changes for specific steps based on the actual time students took on each step in mastering the task. The peer delivered verbal reinforcement and then completed the next step while narrating the step (i.e., “Good, now I am going to take out my ATM card.”). The video model and narration served as the task direction for each step in the task analysis. After the video was completed, the teacher used computer software programs to edit the still images and duration of each step, insert narration, convert the film to a Pod cast file, upload the film to iTunes, and download it onto the iPod.

The teacher set up an account at a local bank for the purpose of this research study. The teacher was not able to obtain permission from the bank manager to videotape the ATM because there is a federal law that prohibits the filming of the machines. For this reason, the teacher used a simulated ATM to create the video. She used a toy ATM (i.e., Summit Toy Zillon Deluxe ATM) which can be purchased online for approximately $40.00. The teacher purchased paint for less than $5.00 and painted the toy ATM to look similar to the real bank ATM. The toy ATM did not contain all of the task analyzed steps, so the teacher created labels for the ATM screen to include the missing steps. She took a series of still images of someone else using the ATM using her classroom camera, and then used a computer program (i.e., Microsoft Photo Story 3, a free download) to create the video using the still images. The program allowed the teacher to record the verbal prompts for the video and to edit the duration for each step. After the video was complete, the teacher had to convert the file to a Quick time movie. The software to convert the video was downloaded for free from the Internet. Next, the teacher used a free web face (i.e., drop.io) to turn the Quick time movie file into a Pod cast that could be downloaded to iTunes. Once the video was in iTunes, the teacher was able to download the file to the iPod used for training. Once the video Pod cast was on the iPod, it was easy to use (e.g., start, stop, pause) during instruction. All students used the same account, ATM card, and personal identification number (PIN) for the account. The account contained a maximum balance of $100.00, and the teacher deposited the money back into the account after each probe session.

Additional materials included each student’s personal wallet, ATM card, 2-in × 3-in laminated card with PIN typed in black ink, data sheets (i.e., baseline data sheets, training data sheets, generalization data sheets, maintenance data sheets, reliability data sheets), and a task analysis for withdrawing money from an ATM.

The teacher developed the task analysis by performing the skill multiple times at multiple ATMs, watching someone else perform the skill, writing down the steps, and having a third person complete the skill by following the task analysis. The task analysis contained 15 steps for baseline probe sessions and 18 steps for training, generalization, and maintenance probe sessions (see task analyses in Table 1).

**Data Collection**

The teacher collected data using a single opportunity probe format (i.e., session will end after student makes one mistake) during baseline probe sessions and using a total task format during training, generalization, and
maintenance probe sessions (i.e., the teacher corrected each misstep by pausing the Pod cast and delivering a verbal paired with a model prompt). During all sessions, the teacher recorded student responses as correct (+) or incorrect (−). A correct response was defined as an independent, accurate response within 5 s to 10 s of the task direction or the completion of the previous step. An incorrect response was defined as the student: (a) not performing the step within 5 s to 10 s of the task direction or the completion of the previous step (i.e., duration error); (b) not completing the step accurately (i.e., topographical error); (c) not completing the step in the right order (i.e., sequential error); or (d) no response. The teacher recorded “D” for duration errors, “T” for topographical errors, “S” for sequential errors, and “0” for no responses. If an error occurred during baseline sessions, the session ended, and the teacher marked a (−) on the remaining steps of the data sheet.

### Procedure

**Baseline.** The teacher conducted baseline procedures prior to intervention in a 1:1 instructional arrangement. She collected baseline data a minimum of three sessions or until data were stable. Baseline sessions used a single opportunity probe format. Each baseline session consisted of one trial containing 15 steps.

The teacher gave the student the ATM card and laminated PIN card to put in his or her wallet and took the student to the ATM and delivered the task direction, “Withdraw 20 dollars from the ATM.” The student had 5 s to 10 s to initiate and complete each response. If the student gave the correct response, the teacher delivered verbal praise, and waited 5 s to 10 s for the student to initiate and complete the next step. If incorrect, the teacher stopped the student and the session was terminated. The possible responses were correct (i.e., accurate completion of the step within 10 s of task direction or previously completed step) or incorrect (i.e., duration error, topographical error, sequential error, no response). The student received verbal praise for correct responses, and incorrect responses were ignored. Any student not in the intervention phase of the experiment completed baseline sessions one day per week until the student met criterion or until data were in an upward trend, and then the student completed three consecutive sessions prior to intervention.

**Instruction.** The teacher used a video Pod cast of a peer completing the task presented on an iPod including error correction to teach three students to withdraw $20.00 from an ATM. Students received one instructional session in a 1:1 arrangement per day, a minimum of four school days per week, as long as school was in session. Students received one trial with 18 task-analyzed steps per session. The teacher presented each session in a multiple opportunity format (i.e., the teacher paused the Pod cast and used a verbal paired with model prompt to correct missteps. Students watched the video Pod cast one time through immediately prior to the first training session.

Prior to each instructional session, the teacher gave the student the ATM card to put in his or her wallet. Then, the target student

#### Table 1: Task Analysis for Using an ATM

<table>
<thead>
<tr>
<th>Steps in the Task Analysis for Using an ATM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Put headphones on</td>
</tr>
<tr>
<td>2. Locate Pod cast on iPod</td>
</tr>
<tr>
<td>3. Press “Play”</td>
</tr>
<tr>
<td>4. Take out wallet (from purse or pocket)</td>
</tr>
<tr>
<td>5. Remove ATM card</td>
</tr>
<tr>
<td>6. Insert ATM card into slot with numbers on left side and quickly remove</td>
</tr>
<tr>
<td>7. Put ATM card in wallet</td>
</tr>
<tr>
<td>8. Press button on screen next to “English”</td>
</tr>
<tr>
<td>9. Enter PIN on keypad</td>
</tr>
<tr>
<td>10. Press button on screen to indicate pin entered correctly</td>
</tr>
<tr>
<td>11. Press button on screen next to “withdraw”</td>
</tr>
<tr>
<td>12. Press button on screen next to “checking”</td>
</tr>
<tr>
<td>13. Press button on screen next to $20.00</td>
</tr>
<tr>
<td>14. Remove money</td>
</tr>
<tr>
<td>15. Put money in wallet</td>
</tr>
<tr>
<td>16. Remove receipt from machine</td>
</tr>
<tr>
<td>17. Put receipt in wallet</td>
</tr>
<tr>
<td>18. Put wallet in pocket or purse</td>
</tr>
</tbody>
</table>

*Note.* Steps 1, 2, and 3 were not applicable to baseline sessions.
and teacher walked up to the ATM, the student stood facing the ATM, and the teacher presented the student with the iPod. The student already had a wallet with the ATM card in his or her pocket or purse. The teacher provided the attentional cue, “Are you ready?” The student indicated readiness by giving a verbal response (e.g., “Yes, I’m ready.”). The teacher provided the task direction, “Withdraw 20 dollars from the ATM,” and waited 10 s for the student to respond. If the student pressed play, then the video modeling and audio prompting played and served as the task direction for each following step of the task analysis. The session continued until the student completed all of the steps correctly. If the student did not put head phones on and press play or made an incorrect response, the teacher corrected the misstep using a verbal paired with a model prompt. The video contained verbal reinforcement for correct responses on a CRF schedule. The teacher provided direct verbal praise at the end of the session for attention to task and participation.

**Maintenance.** The teacher conducted maintenance sessions using the instructional probe procedures at one week, three weeks, and five weeks after each student reached criterion. The students continued to use the iPod with the Pod cast during maintenance sessions.

**Experimental Design**

The researchers used a multiple probe across students design to establish experimental control in this study. They used a video Pod cast of a peer completing the task presented on an iPod to teach three students to withdraw $20.00 from an ATM on the college campus and to generalize the behavior to a novel ATM at a local bank. The design established experimental control when the percentage of accurate student responses increased with the introduction of the video Pod cast and the effect was replicated across three students.

**Reliability**

A resource teacher with a bachelor’s degree collected independent reliability data for one session per week during training sessions, for one session during baseline conditions, and for one session during generalization probe conditions across students. The resource teacher collected these data for one session during maintenance conditions for Emily and Lucy. This resulted in the collection of reliability data for 18.8% of the total baseline
sessions, 25% of the total training sessions, 100% of the total generalization sessions, and 25% of the total maintenance sessions. The resource teacher did not collect reliability data during maintenance sessions for Walter because she was on maternity leave.

The researchers calculated dependent variable reliability on student responses by dividing the number of agreements by the number of agreements plus the number of disagreements and multiplying by 100 (Kennedy, 2005). Procedural fidelity was calculated by dividing the number of observed teacher behaviors by the number of planned teacher behaviors and multiplying by 100 (Billingsley, White, & Munson, 1980). The reliability data collector assessed the following trainer behaviors during baseline sessions, training sessions, generalization probe sessions, and maintenance probe sessions: (a) had materials ready; (b) secured the target student’s attention; (c) cued the student to start the video (during training generalization, and maintenance probe sessions); (d) provided the task direction (during baseline sessions); (e) completed the data sheet; (f) praised correct responses (during baseline); (g) corrected error responses at the appropriate time with the appropriate prompt (during training, generalization, and maintenance sessions); (h) praised attention and participation on a VR3 schedule (during baseline sessions); and (i) praised for attention and participation at the end of the session (during baseline, training, generalization, and maintenance sessions).

During baseline, training, and generalization sessions, the average percentage of dependent variable agreement across all students was 100%. During maintenance sessions, the mean percentage of independent variable agreement for Emily and Lucy was 100%. Independent variable reliability data during baseline, training, and generalization sessions for all students were 100% for all trainer behaviors. For Emily and Lucy, independent reliability was 100% for all behaviors during maintenance sessions.

Results

Results of this study showed that the video modeling and audio prompting Pod cast presented on an iPod with headphones was effective in teaching three students with MSD to acquire 100% of the task analyzed steps to using an ATM to withdraw $20.00 in the community setting. The study also demonstrated that students were able to generalize at least 83% of the task analyzed steps using a novel ATM. In addition, all three students maintained the skill for 5 weeks after training ended.

Results of the video modeling and audio prompting Pod cast procedures for the three students can be viewed in Figure 1. On the graph, the circles represent correct responses during baseline and training phases, the triangles represent correct responses during generalization probe sessions, and the squares represent correct responses during maintenance probe sessions.

All three students’ data were stable during baseline conditions. Data showed an accelerating trend with the introduction of the video Pod cast intervention across all students. Students met criterion after 3, 4 and 5 training sessions respectively. Emily generalized the skill with 89% accuracy to the novel bank ATM. Emily maintained the skill with 100% accuracy for 5 weeks. Lucy generalized the skill with 83% accuracy, and she maintained the skill with 100% accuracy for 5 weeks. Walter generalized the skill with 94% accuracy, and he maintained the skill with 100% accuracy for 5 weeks.

Discussion

The purpose of the study was to evaluate the effectiveness a self-operated Pod cast containing video modeling and audio prompting had on the acquisition, generalization, and maintenance of the task analyzed steps for using an ATM to withdraw $20.00 by three college-aged students with MSD. All participants performed the skill at criterion levels once training procedures were implemented. The participants also were able to maintain the skill at 100% accuracy for 5 weeks. These findings extend previous research (Cihak et al., 2006) on the efficacy of video-prompting simulation strategies to teach acquisition and maintenance of purchasing and banking skills. The findings in this study indicate that current technology utilizing iPods and Pod casts are also useful tools in teaching banking skills.
The findings add to the current literature base on the use of portable electronic devices as effective instructional tools that can be utilized and viewed in the community while completing targeted skills (Mechling, 2011).

The second purpose of this study was to determine whether the three participants could generalize the task analyzed steps to withdrawing $20.00 from a novel ATM using the Pod cast containing video modeling and audio prompting. Although all students generalized the skills, some students decreased accuracy during this phase of the intervention. The teacher identified five factors that may have caused the decrease in accuracy during generalization: (a) the novel ATM had an extra step, (b) the topography of step 13 (i.e., press button on screen next to "$20.00") was different on the novel ATM, (c) the novel ATM was a drive-up ATM located outside and less accessible to pedestrians, (d) the Pod cast was created to match the steps of the ATM on

Figure 1. Percentage of correct responses for ATM use via the iPod across three students.

*Note: Triangles= generalization probes
which the students were trained, and (e) the novel ATM was much older than the ATM on which the students were trained.

iPods are a popular device among people of all ages. It is socially acceptable to see people in all settings listening to their iPods, so there was no reason to fade the prompting system. Pod casts could be created to teach a wide range of skills, and they are most often free to download from the Internet. Individuals with disabilities could be taught to scroll through their Pod casts before completing various tasks in the community setting (e.g., grocery shopping, reading the bus schedule, crossing the street, microwaving popcorn), find the Pod cast appropriate to the activity, press play, and follow the step-by-step video model and audio prompts to complete the task. Given that the data show the video Pod cast with auditory prompting was successful in teaching students with MSD to withdraw money from an ATM, instructors and researchers may consider creating video Pod casts for teaching other banking and functional skills in the community setting (e.g., setting up a bank account). The teacher identified several factors to consider when replicating this study.

The first factor to consider when replicating this study is feasibility. In total, the teacher spent about 10 hours creating the Pod cast, plus 3 hours going to a Pod cast training offered by the school district in which she is employed. The steps to creating the video Pod cast with the toy ATM are outlined in the materials section. One problem with the video was length of time between each step. The time between each step was perfect for Lucy, but it was too slow for Emily and Walter. The teacher considered making a video for each student, but, due to the time it took to make the first video, she decided to use the same video for all three participants.

Another factor to consider when replicating this study is the cost. The teacher used her own money to set up a bank account for the purpose of this investigation. She spent a total of $30 for reinforcers (i.e., each student was allowed to make a $10 purchase after the final maintenance session). She had $100 of her money in the account at all times during the duration of the study, but she got the money, minus the $30.00 used for reinforcers, back at the end of the study. The teacher was able to implement this study with no other costs because she used her classroom camera and computer, free computer program downloads, and a borrowed iPod.

One limitation to this study is that the video Pod cast did not match the steps at the ATM used for generalization sessions. The teacher visited several ATMs before creating the task analysis and the Pod cast, and she discovered that each ATM was different. She decided to create the task analysis and the video based on the ATM used for training. Participants may have been more successful in generalizing the skill if the video was adapted to the new ATM, if generalization sessions were conducted at an ATM more similar (i.e., for pedestrians) to the ATM used for training, or if the teacher taught the skill across more than one ATM during instruction to encourage generalization.

A final limitation was the use of single opportunity probes during baseline. Single opportunity probes, in which the trial was immediately ended as soon as the student made an error, was important in reducing the likelihood of inadvertently teaching the task during baseline sessions. However, our decision to use single opportunity probes during baseline may have resulted in under-estimating the number of steps that a student may have been able to perform successfully if each step in the task analysis had been assessed regardless of errors on earlier steps.

Despite the limitations noted above and the problems encountered when creating the video, a self-operated, hand held, audio/visual Pod cast appears to be an efficient and effective way to teach students with MSD to use an ATM. Although the video was time consuming to create with more practice and for different skills, the videos could be done in a lesser amount of time.

More research should be done using Pod casts for video modeling and audio prompting to teach individuals with MSD a wide range of skills across the curricular domains (i.e., school, community, vocational, leisure, domestic). Future research should investigate if the use of Pod casts increases the rates of skill generalization to novel settings and skill maintenance over time.
References


Received: 3 February 2012
Initial Acceptance: 5 April 2012
Final Acceptance: 8 July 2012