Teaching Writing in Response to Text to Students with Developmental Disabilities Who Participate in Alternate Assessments

Angel Lee
Attainment Company

Diane M. Browder
University of North Carolina at Charlotte

Katherine Hawley
Pinellas County Schools

Claudia Flowers and
Shawnee Wakeman
University of North Carolina at Charlotte

Abstract: This study investigated the effects of task analytic instruction, systematic prompting and graphic organizers on two students’ ability to compose informational text. Participants were provided with information articles from which they identified the key ideas and supporting details. Participants transferred this information to a graphic organizer which was then used to complete a writing template. Depending on the nature of the skill, both a traditional and modified system of least prompts was used during the intervention. Both students increased their ability to accurately compose a permanent product in response to text. Implications for future research and practical implications are discussed.

Writing is important for communication, problem solving, and learning (Koppenhaver & Williams, 2010). Written expression is an essential skill that extends to almost every aspect of individuals’ daily life, both as cognitive and social interaction processes. In schools, students use written language to demonstrate their acquisition of academic content (Mercer & Mercer, 2005). Employers want applicants who can demonstrate proficient writing skills upon entry to the workforce (National Commission on Writing, 2004). Most social networks require that members interact using electronic written messages (e.g., e-mail and texts).

The Common Core State Standards for English Language Arts & Literacy (CCSS-ELA) have defined literacy and communication expectations for all students. While the standards are divided into Reading, Writing, Speaking and Listening, and Language strands for conceptual clarification, the processes of communication are connected (National Governors Association Center for Best Practices & Council of Chief State School Officers, 2010). Writing is not an isolated skill, but builds upon a broad basis of prerequisite literacy skills. For example, many of the writing standards require students to write in response to text. Beginning at grade 4 and continuing through grade 12, writing standard W.9 requires students to “draw evidence from literary or informational texts to support analysis, reflection, and research” (National Governors Association Center for Best Practices & Council of Chief State School Officers, 2010).

While there has been research on developing writing knowledge and skills for students with disabilities (e.g., Harris, Graham, & Adkins, 2014; Harris et al., 2012), there is limited research on writing for students with intellectual disabilities (ID), especially in response to text. For students with ID, writing is additionally complicated by reading level. Some

This work was supported by a cooperative agreement from the U.S. Department of Education, Office of Special Education Programs (H373X100002, Project Officer: Susan.Weigert@ed.gov). The contents do not necessarily represent the policy of the U.S. Department of Education, and no assumption of endorsement by the Federal Government should be made. Correspondence concerning this article should be addressed to Angel Lee, Attainment Company, 3422 Fairfax Woods Dr., Matthews, NC 28105. E-mail: alee@attainmentcompany.com
students with ID required to participate in alternate assessments based on alternate achievement standards (AA-AAS) will be early readers with limited comprehension and writing skills. The new generation of AA-AAS will require students write in response to text. Although teachers will need to prepare their students for this requirement, few models exist beyond those that focus on mechanics (e.g., spelling).

Research on Writing for Students with ID

Research supports that students with ID can use written expression in daily activities (e.g., calendars) by responding to directed reading, spelling activities and group activities that modeled writing components (Erickson & Koppenhaver, 1995). In contrast, most researchers have focused on either simple mechanics of writing or functional use. A review of practices on teaching writing by Katims (2000) suggested that most writing instruction has been functional in nature with students learning to write for a specific purpose, such as addressing envelopes or writing checks. Pennington, Delano, and Scott (2014) found that most interventions targeted basic writing skills, such as spelling (Stromer, Mackay, Howell, McVay, & Flusser, 1996; Stromer, Mackay, McVay, & Fowler, 1998), sentence writing (Yammomoto & Miya, 1999), and adjective use (Rousseau, Krantz, Poulson, Kitson, & McClannahan, 1994). Similarly, in Knight, Browder, Agnello, and Lee’s (2010) limited review of academic writing instruction for students with severe disabilities, research in writing lagged behind research in reading and mathematics for students with ID.

Research on writing for other students with developmental disabilities, like autism spectrum disorders (ASD), has yielded similar limitations. Early research demonstrated that students with ASD could make requests by using cards depicting written texts (LaVigna, 1977) and improve the quality of conversations when they typed their responses (Forsey, Bird, & Bedrosian, 1996). Stromer, Mackay, Howell, McVay, and Flusser (1996) demonstrated that individuals with ASD could generalize spelling skills to handwritten responses using computer-assisted instruction (CAI) and delayed word construction procedures.

Basil and Reyes (2003) evaluated the effects of a computerized software package (i.e., Delta Messages) on sentence construction skills and found that students could acquire targeted responses, demonstrate additional gains in handwritten responses and show measures of phonological awareness. Yamamoto and Miya (1999) also used CAI to teach sentence construction tasks to students with ASD, with results indicating that students acquired computer-based target responses, but also demonstrated generalized gains across handwritten and vocal topographies.

Fewer studies have focused on composition in writing. In an early study, Rousseau et al., (1994) helped students with autism improve their narrative writing skills using AAC devices, story maps, storyboards, and adult modeling. In joint writing activities, the students also increased their use of adjectives, number of words used, and interactions with their peers. Trela (2008) created an I Write NOW strategy for writing opinion paragraphs. After instruction using templates, students were able to compose opinion-based paragraphs that progressed in a logical order.

Pennington (2010) used an intervention for modeling, self-monitoring, prompting, and feedback on cover-letter writings for individuals with mild and moderate ID and found that individuals increased writing performance when provided systematic instruction. Taken together, these three studies offered promise that individuals with developmental disabilities are able to move beyond mechanics to compose writing.

None of the studies identified to date focused on teaching students with ID to write in response to text, a skill emphasized in the CCSS. One option to teach students to do so may be the use of graphic organizers, which have been effective in teaching writing to other populations (Capretz, Ricker, & Saks, 2003; Gersten & Baker, 2001).

Graphic organizers are visual arrays that show relationships among concepts (Smith & Okolo, 2010). For writing tasks, a graphic organizer is a method to support translation of ideas to text as students categorize information into demands of the text structure. The effective use of graphic organizers for improving writing has been documented in multiple studies. These studies demonstrated students
with high incidence disabilities were able to increase participation in writing instruction that responded to the demands of the general education curriculum (James, Abbot, & Greenwood, 2001), improve their focus, organization, and quality of supporting details (Capretz et al., 2003) and improve performance on tests of writing skills (Meyer, 1995). The need exists to determine if graphic organizers might be useful to help students with ID write in response to text. Trela’s (2008) work provided a potential application in that students followed a template to compose their opinion. Similarly, in teaching students to respond to text, the graphic organizer might provide the template students need to compose their response. Knight et al. (2008) note that an evidence-based practice for teaching academics to students with developmental disabilities is systematic instruction including task analyzing the responses to complete an assignment and providing systematic prompting and feedback for each step of the task analysis. These strategies offer a potential approach to teaching students to use a graphic organizer.

The purpose of the current study was to examine the effect of task analytic instruction using least intrusive prompting (LIP) and graphic organizers on the ability to gather and organize information and complete a written product. The research questions under consideration were:

1. What are the effects of task analytic instruction using LIP on identifying key ideas from an informational article?
2. What are the effects of task analytic instruction using LIP on accurately completing a graphic organizer with key ideas and details from an informational article?
3. What are the effects of task analytic instruction using LIP on students’ ability to create a cohesive written product using a graphic organizer and sentence starters?

Method

Participants and Setting

Participants included two middle school age students in a large urban school district who were classified as having an intellectual disability and who participated in the AA-AAS. The two students received special education services in a self-contained classroom. Inclusion criteria for participants included (a) a diagnosis of an intellectual disability, and/or autism, (b) participation in the AA-AAS, (c) emerging written expression, (d) hearing and vision within normal limits, and (e) the ability to respond intentionally (e.g., speaking, pointing). The classroom teacher was asked to select two students that met the above.

Garth was a 14-year old male student, diagnosed with an intellectual disability. Based on the most recent WISC, Garth had an IQ of 60. Garth communicated verbally and read at a low 2nd grade level. He had some emergent writing skills including copying text and writing familiar sight words with a model to support correct spelling. Written expression was tedious for Garth, as he needed to look at each letter in a word before writing it. Garth had IEP goals related to answering comprehension questions, recalling details and sequencing information. Although Garth could answer basic comprehension questions, he struggled with identifying the main idea and author’s purpose. When given a writing prompt, he would dictate complete sentences to the teacher who scribed them, with some prompting to restate and elicit further details. He would stay on topic if it was interesting to him. Given a model, he could copy with nearly 100% accuracy, sometimes omitting ending punctuation or transposing letters. Garth would attempt to write independently, but struggled with spelling and sentence structure. Garth had difficulties remaining on task. He required multiple prompts throughout an activity to remain on task and continue working.

Kevin was a 12-year old male diagnosed with autism. Based on the most recent WISC, Kevin had an IQ of 70. He communicated verbally, however he engaged in self talk that was off topic from the task at hand (e.g., naming the characters from an episode of Sponge Bob). Kevin’s IEP goals in ELA focused on answering comprehension questions and writing sentences that remained on topic. Kevin decoded at a low 4th grade level, but he had difficulties answering inferential questions and determining the author’s purpose. When asked a comprehension question that he did not know the
answer to, he would repeat the question or say “no.” When given a topic, Kevin could compose up to four sentences independently with correct spelling, grammar, and punctuation. In contrast, his sentences would deviate from the topic by the end of his composition. Kevin had some challenging behaviors when work became too difficult. He would push items away, point his finger, and say “no thank you.” He was beginning to learn to use a “one more try” strategy when challenged. He would state “try again?” and keep repeating it until the adult responded with affirmation or help.

The special education teacher served as the interventionist in this study. She had 12 years of experience, held a PhD in Special Education and was recommended by state level administrators. The participating teacher had been a long standing member of the state’s Community of Practice (CoP) and served last year on the CoP Leadership team. All sessions took place in the students’ regularly assigned classroom at the scheduled English-language arts time. Instruction was provided in a small group format at a classroom table with the teacher and the two students. A barrier was placed on one side of the table as other students worked with paraprofessionals. Since the skills being taught built on one another, the sessions took longer as skills two and three were added to intervention. When all three skills were instructed, the sessions took approximately 45 minutes.

Materials

This study included 11 sets of materials. Each set included an original informational article, a graphic organizer, and a writing template with sentence starters related to the topic of the informational article. The informational articles were written by a member of the research team and were based on a variety of age appropriate topics (e.g., sports, community involvement). The articles were written at a low sixth grade level. An illustration was added at the beginning of each paragraph. In general, the illustration represented the content of the paragraph (see Figure 1). The same graphic organizer, a basic organizer that provided students with a place to write the topic, three key ideas and three supporting details, was used across all sets of materials (see Figure 2). Each writing template included sentence starters and a formulaic structure for composing informational text (see Figure 3). One set of materials was used by the teacher to model the skills. The remaining 10 sets were used during baseline and intervention. In addition to student materials, the teacher was provided with two task analysis for each skill (i.e., identify key ideas, identify supporting details, complete graphic organizer, use a template to compose informational text). The teaching materials used during baseline included a teacher script for providing the instructional cue, how the student was expected to respond, as well as a section for data collection. The materials used during intervention included a script for delivering instructional cues, how the student was expected to respond, a script for delivering systematic instruction (i.e., least intrusive prompts) as warranted by student responses, and finally, a section for data collection.

Dependent Variables

The researchers developed a task analysis for each of the three dependent variables. The first dependent variable was the number of independent correct responses on an eight-step task analysis for identifying key details. The second dependent variable was the number of independent correct responses on a ten-step task analysis for identifying supporting details and recording information on a graphic organizer. The third dependent variable was the number of independent correct responses on a ten-step task analysis for composing informational text. See Figure 4 for the task analysis for each of the three dependent variables. The interventionist recorded the students’ responses to each step on the three task analyses. For the purpose of instruction, the interventionist recorded the level of prompt required for each step, however, only unprompted correct (+) responses were graphed.

Procedural Fidelity

Procedural fidelity was recorded by the same member of the research team who collected student data using the steps of the task analysis, noting whether each step of the task anal-
ysis was correctly implemented by the teacher and if each skill was prompted according to the established procedures. Procedural fidelity observation occurred for 22% of sessions. Procedural fidelity for delivery of all three skills was 100%. Inter-observer agreement was computed using an item-by-item method. A member of the research team observed about one fourth of the baseline and intervention sessions. Sessions were observed via Skype. A laptop was placed at the table so that the students were in clear view of the researcher. After the session concluded, the interventionist took her laptop into a private room where the researcher was able to view the graphic organizer and written product. Inter-observer agreement was 96% for Student 1, and 100% for Student 2.

Experimental Design and Procedure

A multiple probe single-case design across skills was used to evaluate the functional relationship between the intervention and students’ responses (Gast, 2010). The design was replicated concurrently with a second student. During baseline, the interventionist followed the task analysis for the three dependent variables with both students in a small group format, but did not prompt responding. Once a stable baseline was established for all three skills (identifying key ideas, identifying the supporting details, completing a graphic organizer), intervention began for skill 1 (i.e., identifying key ideas). Once both students demonstrated a change in trend or level in graphed data for skill 1, baseline probes for

Figure 1. Sample informational text.
conducted for skills 2 and 3. When the additional probes were stable both students entered intervention for skill 2 (i.e., identifying the supporting details, completing a graphic organizer). When graphed data for skill 2 showed an increase in trend and level, baseline probes were conducted for skill 3. When the additional probes were stable, both students entered intervention for skill 3 (i.e., composing informational text).

Baseline phase. In preparation for the baseline assessment, the teacher received all of the specified materials (i.e., 11 sets of materials including an informational article, a graphic organizer, and a writing template; a scripted task analysis for each skill that could also be used to record data). One set of materials was used per baseline session. Each set of materials included a) three copies of the informational article, one for each student and one for the teacher, b) two copies of the graphic organizer, and c) two copies of the writing template. The task analysis used for baseline included a script used for introducing the activity, what the teacher would say and/or do for each step, what the student was expected to do, and boxes for data collection. During baseline the teacher read script to introduce

![Figure 2. Sample graphic organizer.](image-url)
In this essay I will tell about soccer. My purpose is
to inform (entertain, persuade, or inform).

There are lots of reasons to love soccer.

First, soccer is a very popular sport.

For example, in 2014 more than 3 million kids
[supporting detail #1]

Second, soccer has been played for thousands of years.

For example, a game very similar to soccer
[supporting detail #2]

Finally, there are a lot of reasons to love soccer.

For example, soccer is fun for all ages and is a good way to stay healthy.

In conclusion, there are lots of reasons to love soccer.

First, soccer is a very popular sport.

Second, soccer is being played for hundreds of years.

Finally, there are lots of reasons to love soccer.

Figure 3. Sample writing template.

Intervention phase. During intervention the teacher followed a similar scripted task analysis for each skill. The script used during intervention included an additional column with explicit instruction for how to use a hierarchy of least to most prompting for each step of the task analysis (e.g., verbal prompt, specific verbal prompt, model). After introducing the activity, the teacher began by reading the informational article and asking what the topic of the article was. The teacher would continue by reading the first paragraph of the article and asking the student to identify the key idea. If the student said or pointed to the key idea in the first paragraph, the teacher would record an “I” for independent and move to the next step on the task analysis. If the student did not respond, the teacher provided the first level of prompt (e.g., verbal prompt) by saying “Remember, the key idea tells you what the paragraph is about. Listen again.” Reread paragraph. “What was/Point to the key idea?” The student was given an opportunity to respond correctly. If a correct response occurred, the teacher recorded the prompt level (e.g., V for verbal prompt) in the data collection section and moved to the next step in the task analysis (e.g., highlight or underline the key idea in the first paragraph). If a correct response did not occur, the teacher continued to the second level of prompt within the hierarchy (e.g., specific verbal prompt) by rereading the key idea and saying “What was/Point to the key idea?” If a correct response occurred, the teacher recorded the prompt level (e.g., SVP for specific verbal prompt) in the data collection section and moved to the next step in the task analysis (e.g., highlight or underline the key idea in the first paragraph). If a correct response did not occur, the teacher continued to the third level of prompt within the hierarchy (e.g., model) by pointing to the key idea in the paragraph and saying “Here is the key idea. It says... What was/Point to the key idea?” The teacher then recorded the prompt level (M for model) and moved to the next step in the task analysis. Each step on the task analyses were completed in this fashion. However, the least to most prompting levels were individualized to fit what was required of the student. For example, a step that asked a student to identify a key idea was prompted by a series of verbal prompts and a model whereas...
the prompt hierarch for a step that required a student to write specific information on the graphic organizer was a verbal prompt plus a visual cue, then a model, and then a physical cue.

Social validity. The classroom teacher, who also served as the interventionist, was asked to assess the social validity of the study. Using a five-point Likert scale, survey questions were developed to gather the teacher’s perspective on the importance of the skills included in the intervention, the appropriateness of the materials, and the overall effectiveness of the intervention. The students also completed a measure of social validity. The student measure consisted of three yes/no questions and one open ended question (i.e., Tell me what you liked about the lesson . . .).

Results

Garth. Figure 5 shows the number of steps completed correctly across skills. In baseline for skill 1, identifying the key idea in a paragraph, Garth’s responses ranged from 0 to 4 ($M = 3.5$). Once in intervention, Garth showed an immediate increase in trend, with responses ranging from 4 to 8 ($M = 7.2$). In baseline for skill 2, identifying a supporting detail in a paragraph and completing a graphic organizer, Garth’s response ranged from 0 to 2 ($M = .8$). After entering intervention, Garth’s responses showed an immediate increase in trend and level with responses ranging from 6 to 10 ($M = 9.25$). In baseline for skill 3, composing informational text using a template, Garth’s responses ranged from 0 to 2 ($M = 1.3$). An increase in trend and level was seen in Garth’s responses during intervention for skill 3 with responses ranging from 3 to 10 ($M = 5.4$).

Kevin. Figure 6 shows the number of steps completed correctly across skills. In baseline for skill 1, identifying the key idea in a paragraph, Kevin’s responses ranged from 0 to 1 ($M = .25$). Once in intervention, Kevin showed an immediate increase in trend, with responses ranging from 5 to 8 ($M = 7.3$). In baseline for skill 2, identifying a supporting detail in a paragraph and completing a graphic organizer, Kevin’s response ranged from 0 to 2 ($M = .8$). Once in intervention, Kevin showed an immediate increase in trend, with responses ranging from 6 to 10 ($M = 9.25$). In baseline for skill 3, composing informational text using a template, Kevin’s responses ranged from 0 to 2 ($M = 1.3$). An increase in trend and level was seen in Kevin’s responses during intervention for skill 3 with responses ranging from 3 to 10 ($M = 5.4$).
Figure 5. Data across skills for Garth.
Figure 6. Data across skills for Kevin.
graphic organizer, Kevin’s response ranged from 0 to 5 (M = 2). After entering intervention, Kevin’s responses showed an immediate increase in trend and level with responses ranging from 7 to 10 (M = 9.4). In baseline for skill 3, composing informational text using a template, Kevin’s responses ranged from 0 to 9 (M = 3.7). During baseline an accelerating trend was noted as Kevin was able to generalize skills 1 and 2 to skill 3. However, an increase in trend was seen in Kevin’s responses during intervention for skill 3 with responses ranging from 8 to 10 (M = 9.25).

Maintenance

Maintenance data were gathered at one and two weeks post intervention. Both students maintained identifying key ideas and supporting details, completing a graphic organizer and composing informational text. Maintenance data for identifying the key idea in a paragraph were: Garth, range 7 to 8 (M = 7.5); Kevin, range 8 to 8 (M = 8). Maintenance data for identifying the supporting detail and completing the graphic organizer were: Garth, range 10 to 10 (M = 10); Kevin, range 10 to 10 (M = 10). Maintenance data for composing informational text using a template were: Garth, range 9 to 10 (M = 9.5); Kevin, range 9 to 10 (M = 9.5).

Social Validity

Teacher’s social validity responses. Teacher responses indicated that the intervention was appropriate and effective. The teacher indicated strong agreement with the following items: there were meaningful increases in the students’ ability to (a) identify important information in a text, (b) use a graphic organizer, and (c) create a written product. The teacher indicated agreement with the difficulty level, and appropriateness of the materials used. The teacher also agreed with statements such as (a) the skills can be generalized across content areas; (b) I am considering continued use of this instructional package with these students; and (c) I am considering continued use of this instructional package with other students.

Students’ social validity responses. Both students indicated that they liked the informational articles read, liked learning to write better, and that using the graphic organizer helped them improve their writing. When asked what they liked about the lesson, one student wrote: “I Like to write. Good Awesome great job.” The second student wrote: “it was Good.”

Discussion

In the current study, a functional relation was found for the intervention package and students ability to write in response to text. Several reviews of research on writing for students with developmental disabilities have noted how limited the interventions have been to date with an overemphasis on the mechanics of writing (Katims, 2000; Pennington et al., 2014). This is the first study to teach students with developmental disabilities to write in response to text, a skill that is emphasized in the CCSS. The study provides promise that students may be able to learn this type of writing with the type of intensive intervention demonstrated in this study.

The first component of the intervention was the use of a graphic organizer. Some other studies on literacy have found graphic organizers to be beneficial in teaching students with ASD to comprehend text (Browder, Root, Wood, & Allison, in press; Zakas, Browder, Ahlgrim-Delzell & Heafner, 2013). Although graphic organizers also have been found to help students with high incidence disabilities compose writing, the only application found in the literature that approximated this for students with developmental disabilities was the template used by Trela (2008). The lack of prior use of graphic organizers is probably related to the focus on the mechanics of writing. In contrast, when students need to compose passages of text, they need a way to organize and link their conceptual thinking. Graphic organizers provide a means to do so. Visual supports also have been found to be an evidence-based practice for students with ASD (Wong et al., 2015). In the current study, the students were able to use the visual support of a simple outlining graphic organizer to identify the key detail, list supporting details, and then compose their text.
was the use of informational passages that were accessible to the students’ current reading level. Several studies have shown that students with developmental disabilities can learn to comprehend text from their assigned grade level when it is rewritten at a simpler level (Hudson & Browder, 2014; Mims, Hudson, & Browder, 2012). In the current study, these passages also were composed to contain the essential information needed and a few distractions. In contrast, additional research is needed on whether students would be able to generalize from these passages to other informational literature on their reading level.

A third component of the intervention was the use of systematic prompting and feedback to teach each step of a task analysis to perform the written assignment. Strong evidence exists for the use of task analysis and systematic prompting in teaching academic content (Spooner, Knight, Browder, & Smith, 2012). The challenge for teachers is in determining the exact steps of the task analysis and how exactly to prompt each step. The current task analysis was developed by the researcher by performing the assignment and writing down each response. The prompting was a modified system of least intrusive prompting. Several studies on teaching listening comprehension have used a modified system of least intrusive prompting to help the student find the answer in the text (Hudson, & Browder, 2014; Mims et al., 2012). One study extended this for emergent readers, using a prompt hierarchy that included using the WH (e.g., who, where) word definition to understand the question being asked, rereading the sentence that contained the answer, and finally, reading the answer itself (Browder, Hudson, & Wood, 2013).

Similarly, in the current study, the first prompt given was a verbal reminder statement (e.g., “Remember, the key idea tells you what the paragraph is about.”). The second level prompt continued to stay at the verbal level but was more specific and included re-reading the sentence with the answer. Finally, a model prompt was provided if the specific verbal prompt did not elicit a correct response.

Limitations and Recommendations for Future Research

Although this multicomponent intervention produced the desired results in written composition, the contribution of each component needs further analysis. For example, it may be that the students would have been able to compose their response to text without the structure of the writing template. They also may have been able to learn the steps of the task analysis using other prompting methods like time delay. Much more research is needed to determine the most effective and efficient intervention components to teach students with developmental disabilities to write in response to texts.

This study also was limited by the number of participants and their specific characteristics. In single-case design, multiple studies are needed to demonstrate an intervention as evidence-based (Horner et al., 2005). The current study is the first to evaluate an intervention for teaching students with developmental disabilities to write in response to text and offers promise that this population can do so with the intensive supports provided. It should be noted that these students already had some emerging writing skills including the mechanics to compose a sentence. This intervention might not generalize to students with fewer reading and writing skills who might need additional supports to write. For example, Knight et al., (2008) suggest that students with moderate and severe developmental disabilities might need to use AAC to select responses to fill in sentence starters.

Finally, research is needed in general on teaching students with developmental disabilities to compose a written passage whether informational or narrative. When considered with the studies by (Pennington, 2010; Trela, 2008), there seems to be promise that students with developmental disabilities can learn more than the mechanics of writing, but much more research is needed to determine what and how to teach in this academic area. This research is urgently needed as states begin to require students in alternate assessments to compose written responses so that teachers will have models to help students meet these increasing expectations.
Implications for Practice

A number of implications for practice emerged from the findings of this study. Overall, the findings suggest students with ID can identify important information in an informational article, organize that information and then use that information to compose text.

Although further modification may be needed to the materials (e.g., providing students with prewritten sentences), the results of the current study indicate that this intervention may be effective with a wide range of students, such as those who are not currently traditional writers. The use of a graphic organizer and a writing template make this intervention applicable to students with varying abilities. Additionally, the format of the materials used in this study could be changed to electronic, allowing them to be used on an interactive whiteboard (IWB). The use of an IWB may also increase the effectiveness with a range of students.

The intervention and materials used have considerable implications for the classroom. The graphic organizer used in this study is applicable across content areas and could be used to organize science or social studies content. The CCSS emphasize referring to evidence found within the text, both informational and narrative. The graphic organizer used in this study is applicable to both types of literature. This study used a writing template with sentence starters to support the task of composing informational text. The use of sentence starters may increase language skills and provide an example of correct grammatical sentences (e.g., use of capitalization and punctuation). Similar to the graphic organizers, the use of sentence starters is a support that can be used across content areas. Additionally, the use of sentence starters may allow students to interact with and compose more complex text than would otherwise be possible.

In summary, this study contributes to the small body of literature on writing for students with ID. This study was the first to evaluate the use of systematic instruction and graphic organizers on the ability to compose written text in response to informational articles, a skill that is emphasized in the CCSS. Using this intervention, students were able to identify key ideas and supporting details within an informational article and then compose a written product based on the text. Written expression is an essential skill that is applicable to daily living, successful employment and social interaction (Koppenhaver & Williams, 2010; National Commission on Writing, 2004). This study offers promise that when provided with instructional supports, students with ID may be able compose written passages in response to text.

References

Received: 1 July 2015
Initial Acceptance: 1 September 2015
Final Acceptance: 22 October 2015